refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon GSE27575
Expression data for UPEC and GBS cystitis in female C57BL/6 mice
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Data defines for the first time a whole bladder transcriptome of UPEC cystitis in female C57BL/6 mice using genome-wide expression profiling and temporal analysis to map early host response pathways stemming from UPEC colonization

Publication Title

Genome-wide mapping of cystitis due to Streptococcus agalactiae and Escherichia coli in mice identifies a unique bladder transcriptome that signifies pathogen-specific antimicrobial defense against urinary tract infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP096672
Regulation of mRNA translation and subcellular location controls protein synthesis of key modulators of the DNA damage response during B cell activation [PolyRiboSeq]
  • organism-icon Mus musculus
  • sample-icon 157 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response. Overall design: Splenic B cells from C57BL/6Babr mice were isolated and activated with LPS for 48 hours prior induction or not of DNA damage with etoposide. After 4 hours, cells were treated with cycloheximide (100 microgrames per ml) for 3 minutes. Then, cytoplasmic extracts were collected. Polysome fractionation in sucrose gradients (10-50% sucrose) was performed for isolation of mRNA associated to monosomes (fractions 4 to 7), light polysomes (fractions 8 to 10) or heavy polysomes (fractions 11 to 16). The ATM kinase inhibitor KU55933 was added 1 hour prior induction of DNA damage with etoposide.

Publication Title

Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE80342
Pilot open label clinical trial of oral ruxolitinib in patients with alopecia areata
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This goal of these studies were to examine gene expression profiles of skin from patients with alopecia areata undergoing treatment with oral ruxoltinib.

Publication Title

Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata.

Sample Metadata Fields

Sex, Race, Subject

View Samples
accession-icon GSE37562
hnRNP L-RNA in HeLa
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE37561
Expression data from HeLa cells after hnRNP L knockdown (versus luciferase control), including cycloheximide treatment
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Transient siRNA-mediated knockdown of hnRNP L, followed by cycloheximide treatment to eliminate NMD.

Publication Title

Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP043188
HeLa cell polyA- RNA-seq
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIlluminaHiSeq2000

Description

Coilin iCLIP data revealed 42 novel human snoRNAs of intronic origin. To validate their expression and estimate abundance of novel and annotated snoRNAs, we performed RNA-seq on polyA- and rRNA-depleted RNA isolated from HeLa cells. Results show that expression of novel snoRNAs is comparable to the previously annotated snoRNAs. Overall design: 1 replicate of RNA depleted of polyA and ribosomal RNA.

Publication Title

The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP018786
NSun2-mediated cytosine-5 methylation in Vault non-coding RNA determines its processing into small RNAs [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Autosomal-recessive loss of the NSUN2 gene has been recently identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNA). Whether NSun2 methylates additional RNA species is currently debated. Here, we adapted the individual-nucleotide resolution UV cross-linking and immunoprecipitation method (iCLIP) to identify NSun2-mediated methylation in RNA transcriptome. We confirm site-specific methylation in tRNA and identify messenger and non-coding RNAs as potential methylation targets for NSun2. Using RNA bisulfite sequencing we establish Vault non-coding RNAs as novel substrates for NSun2 and identified six cytosine-5 methylated sites. Furthermore, we show that loss of cytosine-5 methylation in Vault RNAs causes aberrant processing into argonaute-associating small RNA fragments (svRNA). Thus, impaired Vault non-coding RNA processing may be an important contributor to the etiology of NSUN2-deficieny human disorders. Overall design: mRNA-seq in Embryonic kidney (HEK293) cells transfected with siRNA against Nsun2 vs control

Publication Title

NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE75469
Affymetrix exon array and iCLIP analysis of SAFB1 function
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon SRP056115
The interaction of PRC2 with RNA or chromatin is mutually antagonistic [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Polycomb repressive complex 2 (PRC2) maintains developmental regulator genes in a repressed state through methylation of histone H3 at lysine 27 (H3K27me3) and is necessary for cell differentiation. We and others have previously found that the PRC2 subunit Suz12 interacts with RNA in vitro and other studies have shown that Ezh2 and Jarid2 also possess RNA binding function. The interaction of PRC2 with RNA has been suggested to regulate PRC2 targeting or enzymatic activity, but the RNAs directly bound by PRC2 in cells, and the role of each PRC2 RNA binding subunit, remain unclear. We have used different CLIP techniques, which use UV-crosslinking to allow detection of direct Suz12-RNA interactions as they occur in living mouse ES cells. Suz12 binds nascent RNA and has a preference for interaction with the 3'UTR, showing it does have binding specificity in cells. RNAs bound by Suz12 at the 3'UTR encode developmental regulator genes. Suz12 remains bound to RNA upon deletion of Ezh2 or Jarid2 showing that it binds RNA independently of other PRC2 subunits. We also show that binding of Suz12 to RNA or chromatin is mutually inhibitory. Although Ezh2 and Jarid2 also bind RNA, Ezh2 and Jarid2 deletion causes an increase in Suz12 RNA binding, without changing its specificity, which reflects the loss of Suz12 from chromatin. Similarly, disruption of Suz12-RNA interactions by RNA polymerase II inhibition or RNase treatment increases Suz12 binding to chromatin. These results therefore suggest that Suz12 acts as an RNA sensor, binding to the 3'UTR of nascent RNAs and modulating the interaction of PRC2 with chromatin. Overall design: Total RNAseq libraires from of Mus musculus Ezh2 fl/fl Stem Cells after and before Tamoxifen treatment.Up to three replicates per condition

Publication Title

The interaction of PRC2 with RNA or chromatin is mutually antagonistic.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE75465
Human Exon 1.0 ST Affymetrix array data from SHSY-5Y cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Comparison of control vs SAFB1 knockdown

Publication Title

iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function.

Sample Metadata Fields

Disease, Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact