Patients deficient in the guanine nucleotide exchange factor DOCK8 have decreased numbers and impaired in vitro function of T regulatory (Treg) cells and make autoantibodies, but seldom develop autoimmunity. We show that similarly, Dock8-/- mice have decreased numbers and impaired in vitrofunction of Treg cells, but do not develop autoimmunity. In contrast, mice with selective DOCK8 deficiency in Treg cells develop lymphoproliferation, autoantibodies, and gastrointestinal inflammation, despite normal percentage and in vitro function of Treg cells, suggesting that deficient T effector cell function might protect DOCK8 deficient patients from autoimmunity. We demonstrate that DOCK8 associates with STAT5 and is important for IL-2 driven STAT5 phosphorylation in Treg cells. DOCK8 localizes within the lamellar actin ring of the Treg cell immune synapse (IS). Dock8-/- Treg cells have abnormal TCR-driven actin dynamics, decreased adhesiveness, altered gene expression profile, an unstable IS with decreased recruitment of signaling molecules, and impaired transendocytosis of the co-stimulatory molecule CD86. These data suggest that DOCK8 enforces immunological tolerance by promoting IL-2 signaling, TCR-driven actin dynamics, and the IS in Treg cells. Overall design: CD4+CD25+CD39+YFP+ and CD4+CD25+CD39+YFP- Treg cells were isolated from the spleen and lymph nodes of Foxp3YFP-Cre/+/Dock8flox/flox mice. Treg cells were then cultured overnight in complete media alone or in the presence of media + anti-CD3+CD28 beads (1 bead per cell). After 16 hours, cells were harvested and the RNA was isolated. For unstimulated samples, there were 4 independent YFP- samples and 6 independent YFP+ samples. For bead stimulated samples, there were 3 independent YFP- samples and 2 YFP+ samples.
DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs.
Specimen part, Cell line, Treatment, Subject
View SamplesBone marrow mesenchymal stem cells (MSC) were adipogenically differentiated followed by dedifferentiation. We are interested to know the new fat markers, adipogenic signaling pathways and dedifferentiation signaling pathways.Furthermore we are also intrested to know that how differentiated cells convert into dedifferentiated progenitor cells. To address these questions, MSC were adipogenically differentiated, followed by dedifferentiation. Finally these dedifferentiated cells were used for adipogenesis, osteogenesis and chondrogenesis. Histology, FACS, qPCR and GeneChip analyses of undifferentiated, adipogenically differentiated and dedifferentiated cells were performed. Regarding the conversion of adipogenically differentiated cells into dedifferentiated cells, gene profiling and bioinformatics demonstrated that upregulation (DHCR24, G0S2, MAP2K6, SESN3) and downregulation (DST, KAT2, MLL5, RB1, SMAD3, ZAK) of distinct genes play a curcial role in cell cycle to drive the adipogenically differentiated cells towards an arrested state to narrow down the lineage potency. However, the upregulation (CCND1, CHEK, HGF, HMGA2, SMAD3) and downregulation (CCPG1, RASSF4, RGS2) of these cell cycle genes motivates dedifferentiation of adipogenically differentiated cells to reverse the arrested state. We also found new fat markers along with signaling pathways for adipogenically differentiated and dedifferentiated cells, and also observed the influencing role of proliferation associated genes in cell cycle arrest and progression.
Transdifferentiation of adipogenically differentiated cells into osteogenically or chondrogenically differentiated cells: phenotype switching via dedifferentiation.
Specimen part
View SamplesThe R47H variant of TREM2 is associated with higher risk of Alzheimer's disease. We generated mice expressing the common variant or R47H variant of human TREM2
Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism.
Sex, Age, Specimen part
View SamplesILC3 contain 3 well-defined subsets, CCR6+ ILC3, NKp46+ ILC3, and CCR6NKp46 DN ILC3. These subsets had not previously been transcriptionally compared and the extent to which they had shared or unique transcriptional profiles remained unclear.
IL-15 sustains IL-7R-independent ILC2 and ILC3 development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of global regulators of T-helper cell lineage specification.
Specimen part
View SamplesThe aim of the dataset was to identify genome-wide regulators of gene expression in early differentiation of human cord blood derived CD4+ T cells cultured under Th1 (Act+IL12) and Th2 (Act+IL4) polarizing conditions.
Identification of global regulators of T-helper cell lineage specification.
Specimen part
View SamplesThe aim of the dataset was to identify genome-wide regulators of gene expression in early differentiation of human cord blood derived CD4+ T cells cultured under Th1 (Act+IL12) and Th2 (Act+IL4) polarizing conditions. Overall design: Total RNA from naive CD4+ T cells was compared to total RNA from cells cultured in the following three conditions: activating (antiCD3+antiCD28)+antiIL4+antiIFNG; activating (antiCD3+antiCD28)+IL12+antiIL4; activating (antiCD3+antiCD28) +IL4+antiIFNG. Samples from 3 biological replicates were analysed.
Identification of global regulators of T-helper cell lineage specification.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling.
Specimen part
View SamplesAmong the features that distinguish type 1 innate lymphoid cells (ILC1s) from NK cells is a gene signature indicative of TGFb-family cytokine imprinting. To assess the impact of TGFb family cytokines on ILC1 differentation, we examined SMAD4- a transcription factor that facilitates the signaling pathway common to all TGFb family cytokines-was specifically ablated in ILCs and NK cells. While SMAD4 deficiency did not affect ILC1 differentation, NK cells paradoxically aquired an ILC1-like gene signature and were incapable of controlling tumor metastasis and viral infection.
SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling.
No sample metadata fields
View SamplesAmong the features that distinguish type 1 innate lymphoid cells (ILC1s) from NK cells is a gene signature indicative of TGFb-family cytokine imprinting. To assess the impact of TGFb family cytokines on ILC1 differentation, we examined SMAD4- a transcription factor that facilitates the signaling pathway common to all TGFb family cytokines-was specifically ablated in ILCs and NK cells. While SMAD4 deficiency did not affect ILC1 differentation, NK cells paradoxically aquired an ILC1-like gene signature and were incapable of controlling tumor metastasis and viral infection.
SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling.
Specimen part
View Samples