refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE146756
Microarray analysis of Dorsal root ganglion (DRG) sensory neurons from the liver kinase B1 (LKB1) knockout
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study is to uncover the changes in the transcriptome of sensory neurons of the liver kinase B1 (LKB1) knockout

Publication Title

Regulation of axonal morphogenesis by the mitochondrial protein Efhd1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33315
Discovery of novel recurrent mutations and rearrangements in early T-cell precursor acute lymphoblastic leukaemia by whole genome sequencing
  • organism-icon Homo sapiens
  • sample-icon 270 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Acute lymphoblastic leukaemia with early T-cell precursor immunophenotype (ETP ALL) is a highly aggressive subtype of ALL of unknown aetiology. To gain insights into the genetic basis of this disease, we performed whole genome sequencing of tumour and normal DNA of 12 children with ETP ALL. Analysis of structural and sequence variants in this discovery cohort, and mutation recurrence screening in a panel of 51 ETP and 43 non ETP ALL samples identified a high frequency of activating mutations in genes regulating cytokine receptor and Ras signalling, including IL7R, NRAS, KRAS, FLT3, BRAF, JAK1 and JAK3 in ETP ALL. Moreover, we identified multiple new targets of mutation in including GATA3, EP300, RUNX1, DNM2, ECT2L, HNRNPA1 and HNRNPR, as well as genes known to be mutated in T-ALL, including NOTCH1, PHF6, and WT1.. Five of 12 ETP ALL cases harboured novel chromosomal translocations, several of which accompanied complex multichromosomal rearrangements and resulted in the expression of chimeric in-frame fusion genes disrupting hematopoietic regulators, including ETV6-INO80D, NAP1L1-MLLT10 and RUNX1-EVX1. These results indicate that although ETP ALL is genetically heterogeneous, activation of Ras and cytokine receptor signalling distinguishes this disease from non-ETP ALL. These findings suggest that targeting this pathway may improve the currently dismal outcome of this disease.

Publication Title

The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28703
Discovery of novel recurrent mutations and rearrangements in early T-cell precursor acute lymphoblastic leukemia by whole genome sequencing
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole genome sequencing of tumour and normal DNA from 12 children with ETP ALL and assessed the frequency of somatic alterations in 52 ETP and 42 non-ETP T-ALL samples by sequencing and DNA copy number analysis. ETP ALL was characterised by a high frequency of activating mutations in genes regulating cytokine receptor and Ras signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF); alterations disrupting haemopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1, EP300); and inactivating mutations in histone modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of mutation including DNM2, ECT2L and RELN. Ten of 12 ETP ALL cases harboured chromosomal rearrangements, several of which complex and resulted in the expression of novel chimeric in-frame fusion genes disrupting haemopoietic regulators. Thus, similar to myeloid malignancies, mutations that drive proliferation, impair differentiation and disrupt histone modification are hallmarks of ETP ALL. Moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haemopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.

Publication Title

The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8488
Inhibitor Trials
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Objectives: To identify similarities and differences in gene expression data in the MEK/ERK and PI3K pathways and to determine how histone modification affects these same pathways.

Publication Title

Regulation of gene expression by PI3K in mouse growth plate chondrocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32201
Transcriptome of early postnatal brain development of eIF2B-R132H/R132H mutant mice relative to wild-types.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Genome-wide mRNA expression in brains of wild-type and eIF2B-R132H/R132H mutant mice (Geva et al., BRAIN 133 (8), 2010) profiled at postnatal (P) days 1, 18 and 21 to reflect the early proliferative stage prior to white matter establishment (P1) and the peak of oligodendrocye differentiation and myelin synthesis (P18 and P21).

Publication Title

A point mutation in translation initiation factor eIF2B leads to function--and time-specific changes in brain gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2154
Micromass Time Course
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Primary micromass cultures derived from 11.5 day old mouse embryo limb buds were cultured for 15 days in differentiating conditions (beta-glycerophosphate and ascorbic acid). Total RNA from differentiating chondrocytes was isolated every three days i.e. days 3,6,9,12 and 15 and hybridized to MOE430A chips. Objective: Gain a view of the temporal gene expression changes occuring during chondrocyte differentiation.

Publication Title

Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7683
Microarray of Dexamethasone-treated primary chondrocytes identifies downstream targets of glucocorticoid signalling
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated.

Publication Title

Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP065612
Predicting microRNA targeting efficacy in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

A series of transfections was performed in Drosophila S2 cells to explore: 1) the types of target sites that Drosophila microRNAs recognize, 2) the relative functional efficacy of these sites in mediating repression, and 3) the determinants that allow some sites to have greater potency than others. 3p-seq was also performed to help reannotate and quantify the landscape of 3'' UTRs in Drosophila S2 cells. Overall design: Nine mRNA profiles were generated, with Drosophila S2 cells transfected with one of 6 microRNAs (miR-1, miR-4, miR-92a, miR-124, miR-263a, and miR-997). These samples were compared to 3 biological replicates of a mock transfection condition. 3p-seq data for S2 cells was also generated to help reannotate and quantify 3'' UTR isoforms.

Publication Title

Predicting microRNA targeting efficacy in Drosophila.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE7685
Transcriptional profiling of growth plate chondrocyte differentiation yields insight into endochondral ossification
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A variety of cell cultures models and in vivo approaches have been used to study gene expression during chondrocyte differentiation. The extent to which the in vitro models reflect bona fide gene regulation in the growth plate has not been quantified. In addition, studies that evaluate global gene expression changes among different growth plate zones are limited. To address these issues, we completed a microarray screen of three growth plate zones derived from manually segmented embryonic mouse tibiae. Classification of genes differentially expressed between each respective growth plate zone, functional categorization as well as characterization of gene expression patterns, cytogenetic loci, signaling pathways and functional motifs confirmed documented data and pointed to novel aspects of chondrocyte differentiation. Parallel comparisons of the microdissected tibiae data set to our previously completed micromass culture screen further corroborated the suitability of micromass cultures for modeling gene expression in chondrocyte development. The micromass culture system demonstrated striking similarities to the in vivo microdissected tibiae screen; however, the micromass system was unable to accurately distinguish gene expression differences in the hypertrophic and mineralized zones of the growth plate. These studies will allow us to better understand zone-specific gene expression patterns in the growth plate. Ultimately, this work will help define both the genomic context in which genes are expressed in the long bones and the extent to which the micromass culture system is able to recapitulate chondrocyte development in endochondral ossification.

Publication Title

Genome-wide analyses of gene expression during mouse endochondral ossification.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP109284
Developmentally-Faithful and Effective Human Erythropoiesis in Immunodeficient and Kit Mutant Mice
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immunodeficient mouse models have been valuable for studies of human hematopoiesis, but high-fidelity recapitulation of erythropoiesis in most xenograft recipients remains elusive. Recently developed immunodeficient and Kit mutant mice, however, have provided a suitable background to achieve higher-level human erythropoiesis after long-term hematopoietic engraftment. While there has been some characterization of human erythropoiesis in these models, a comprehensive analysis of various developmental stages has not yet been reported. Here, we have utilized cell surface phenotypes, morphologic analyses, and molecular studies to fully characterize human erythropoiesis from multiple developmental stages in immunodeficient and Kit mutant mouse models following long-term hematopoietic stem and progenitor cell engraftment. We show that human erythropoiesis in such models demonstrates complete maturation and enucleation, as well as developmentally appropriate globin gene expression. These results provide a framework for future studies to utilize this model system for interrogating disorders affecting human erythropoiesis and for developing improved therapeutic approaches. Overall design: (mRNA-seq) RNA-seq of human CD235a+ cells isolated 14-16 weeks post-implantation from mouse bone marrow were performed for three biological replicates each of mice xenograted with adult bone marrow-derived human CD34+ cells and cord blood-derived CD34+ cells.

Publication Title

Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice.

Sample Metadata Fields

Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact