This SuperSeries is composed of the SubSeries listed below.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesDrug-induced kidney injury, largely caused by proximal tubular intoxicants, limits development and clinical use of new and approved drugs. Assessing preclinical nephrotoxicity relies on animal models that are frequently insensitive, and thus, novel techniques, including human microphysiological systems, or “organs on chips,” are proposed to accelerate drug development and predict safety. Polymyxins are potent antibiotics against multidrug-resistant microorganisms; yet clinical use remains restricted because of high risk of nephrotoxicity and limited understanding of toxicological mechanisms. To mitigate risks, structural analogs of polymyxins (NAB739 and NAB741) are currently in clinical development. Using a microphysiological system to model human kidney proximal tubule, we exposed cells to polymyxin B (PMB) and observed significant increases of injury signals, including kidney injury molecule-1 KIM-1and a panel of injury-associated miRNAs (each P < 0.001). Surprisingly, transcriptional profiling identified cholesterol biosynthesis as the primary cellular pathway induced by PMB (P = 1.2 ×10–16), and effluent cholesterol concentrations were significantly increased after exposure (P < 0.01). Additionally, we observed no upregulation of the nuclear factor (erythroid derived-2)–like 2 pathway despite this being a common pathway upregulated in response to proximal tubule toxicants. In contrast with PMB exposure, minimal changes in gene expression, injury biomarkers, and cholesterol concentrations were observed in response to NAB739 and NAB741. Our findings demonstrate the preclinical safety of NAB739 and NAB741 and reveal cholesterol biosynthesis as the novel (to our knowledge) pathway for PMB- induced injury. To our knowledge, this is the first demonstration of a human-on-chip platform used for simultaneous safety testing of new chemical entities and defining unique toxicological pathway responses of an FDA-approved molecule. Overall design: Cells from six donors were seeded into a total of 74 kidney chips, and effluents of kidney MPS were exposed for 48 hours of treatments
Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity.
Specimen part, Treatment, Subject
View SamplesAndrogens are a prequisite for the development of human prostate and prostate cancer. Androgen action is mediated via androgen receptor. Androgen ablation therapy is used for the treatment of metastasized prostate cancer. The aim of the study was to identify genes differentially expressed in benign human prostate, prostate cancer and in prostate tissue three days after castration. These genes are potential diagnostic and therapeutic targets for prostate cancer and benign prostatic hyperplasia.
Identification of androgen-regulated genes in human prostate.
Specimen part, Disease, Treatment
View SamplesDNA Damage Regulated Autophagy Modulator 1 (DRAM1) is a stress-inducible regulator of autophagy and cell death. DRAM1 has been implicated in cancer, myocardial infarction, and infectious diseases, but the molecular and cellular functions of this transmembrane protein remain poorly understood. Previously, we have proposed DRAM1 as a host resistance factor for tuberculosis (TB) and a potential target for host-directed anti-infective therapies. In this study, we generated a zebrafish dram1 mutant and investigated its loss-of-function effects during Mycobacterium marinum (Mm) infection, a widely used model in TB research. In agreement with previous knockdown analysis, dram1 mutation increased the susceptibility of zebrafish larvae to Mm infection. RNA sequencing revealed major effects of Dram1 deficiency on metabolic, immune response, and cell death pathways during Mm infection, whereas only minor effects on proteinase and metabolic pathways were found under uninfected conditions. Furthermore, unchallenged dram1 mutants did not display overt autophagic defects, while autophagic targeting of Mm was reduced in absence of Dram1, despite overall increased Lc3-II accumulation. The phagocytic ability of dram1 mutants was unaffected, but acidification of Mm-containing vesicles was strongly reduced, indicating that Dram1 is required for phagosome maturation. By in vivo imaging we observed that Dram1-deficient macrophages fail to restrict Mm during early stages of infection. The resulting enhanced bacterial burden phenotype could be rescued by knockdown of inflammatory caspase (caspa) and gasdermin (gsdmeb), demonstrating pyroptosis as the mechanism underlying premature cell death of Mm-infected macrophages in dram1 mutants. Collectively, these data demonstrate that dissemination of mycobacterial infection in zebrafish larvae is promoted in absence of Dram1 due to reduced maturation of mycobacteria-containing vesicles, failed intracellular containment, and consequent pyroptotic cell death of infected macrophages. These results provide new evidence that Dram1 plays a central role in host resistance to intracellular infection, acting at the crossroad of autophagy and cell death. Overall design: Mutant embryos and their controls were manually dechorionated at 24 hours post fertilization (hpf) and at 28 hpf they were infected by injecting 150 or 300 colony forming units of M. marinum strain M into the blood island, or mock-injected with PBS/2%PVP. After injections embryos were transferred into fresh egg water containing 0.003% 1-phenyl-2-thiourea (Sigma-Aldrich) to prevent melanisation and incubated for 4 days at 28,5°C. After the incubation period, infected and uninfected mutants and their controls were imaged and groups of 20 embryos were snap-frozen in liquid nitrogen and RNA was isolated for Illumina RNAseq analysis.
Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages.
Subject
View SamplesData on the temporal dynamics of human placental gene expression is scarce. We have completed the first whole-genome profiling of human placental gene expression dynamics (GeneChips, Affymetrix) from early to mid- gestation (10 samples; gestational weeks 5 to 18) and report 154 genes with considerable change in transcript levels (FDR P<0.1). Functional enrichment analysis revealed >200 GO categories that are statistically over-represented among 105 genes with dynamically increasing transcript levels. Analysis in an extended sample (n=43; gestational weeks 5 to 41) conformed a highly significant (FDR P<0.05) expressional peak in mid-gestation placenta for ten genes: BMP5, CCNG2, CDH11, FST, GATM, GPR183, ITGBL1, PLAGL1, SLC16A10, STC1. A central hypothesis of our study states that the aberrant expression of genes characteristic to mid-gestation placenta may contribute to affected fetal growth, maternal preeclampsia (PE) or gestational diabetes (GD). The gene STC1 coding for Stanniocalcin 1 (STC1) was identified with a sharp placental expressional peak in mid-gestation, increased mRNA levels at term and significantly elevated STC1 protein levels in post-partum maternal plasma in all pregnancy complications. The highest STC1 levels were identified in women, who developed simultaneously PE and delivered an SGA baby (median 731 vs 418 pg/ml in controls; P=0.001). CCNG2 and LYPD6 exhibited significantly increased placental mRNA expression and enhanced intensity of immunohistochemistry staining in placental sections all studied in GD and PE cases. Aberrant expression of mid-gestation specific genes in pregnancy complications at term indicates the importance of the fine-scale tuning of the temporal dynamics of transcription regulation in placenta. Observed significantly elevated plasma STC1 in complicated pregnancies warrants further investigations of its potential as a biomarker. Interestingly, a majority of genes with high expression in mid-gestation placenta have also been implicated in adult complex disease. This observation promotes a recently opened discussion on the role of placenta in developmental programming.
Mid-gestational gene expression profile in placenta and link to pregnancy complications.
Specimen part
View SamplesRNA sequencing was performed on RNA isolated from groups of 6 hpf wild type and mecp2-null embryos (n=3 biological replicates per condition with 30 embryos pooled per replicate). DESeq2 analysis was performed using https://usegalaxy.org/ Overall design: Whole embryo mRNA profile of 30 pooled mecp2-null or wild type 6 hpf zebrafish embryos, in triplicate, using the Illumina HiSeq4000 platform
Mecp2 regulates <i>tnfa</i> during zebrafish embryonic development and acute inflammation.
No sample metadata fields
View Samples