In the central nervous system (CNS), the microRNAs (miRNAs), small endogenous RNAs exerting a negative post-transcriptional regulation on mRNAs, are involved in major functions, such as neurogenesis, and synaptic plasticity. Moreover, they are essential to define the specific transcriptome of the tissues and cell types. However, few studies were performed to determine the miRNome of the different structures of the rat CNS, even through rat is a major model in neuroscience. We determined the miRNome profile of the hippocampus, the cortex, the striatum, the spinal cord and the olfactory bulb, by small RNA-Seq. We found a total of 365 known miRNAs' and 90 novel miRNAs expressed in the CNS of the rat. Novel miRNAs seemed to be important in defining structure-specific miRNomes. Differential analysis showed that several miRNAs were specifically enriched/depleted in these CNS structures. Then, we correlated miRNAs' expression with the expression of their mRNA targets by mRNA-Seq. This analysis suggests that the transcriptomic identity of each structure is regulated by specific miRNAs. Altogether, these results suggest the critical role played by these enriched/depleted miRNAs in the functional identities of CNS structures. Overall design: miRNA and mRNA profile of 5 structures of the central nervous system of rat, for each structurewe analyzed three biological replicates
Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures.
Specimen part, Cell line, Subject
View SamplesOur laboratory's interest is in understanding the molecular principles that underlie the regional organization of the mammalian metanephric kidney. Our goal is to generate a detailed spatial map of the cellular expression of selected regulatory genes during mammalian kidney development. The goal of this study is to identify a population of genes that are enriched in the renal vesicle (RV) and its derivatives using Wnt4 mutants.
Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation.
Sex
View SamplesDuring mammalian kidney development, mesenchymal nephron progenitors (cap mesenchyme) differentiate into the epithelial cells that go on to form the nephron. Although differentiation of nephron progenitors is triggered by activation of Wnt/b-catenin signaling, constitutive activation of Wnt/b-catenin signaling blocks epithelialization of nephron progenitors. Full epithelialization of nephron progenitors requires transient activation of Wnt/b-catenin signaling. We performed transcriptional profiling of nephron progenitors responding to constitutive or transient activation of Wnt/b-catenin signaling.
Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks.
No sample metadata fields
View SamplesT84 cells were treated with DMSO, 30nM trametinib (MEKi), 1µM JQ1 (BRD4i) or the combination of trametinib and JQ1 (combo) for 24h. Overall design: 3 replicates per condition were analyzed by RNA-seq.
Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.
Cell line, Treatment, Subject
View SamplesHCT116 cells were treated with with increasing concentrations of trametinib over 2 months. Drug-resistant clones emerged and were cultured in the presence of 30 nmol/L trametinib. These cells exhibited a greater than 10-fold increase in the GI50 for trametinib compared to the parental cell line. RNA-seq of the resistant clone HCT116_R4 versus the parental cells identified differentially expressed genes potentially involved in resistance. Overall design: For the parental and resistant clone, 3 replicates each were analysed by RNA-seq.
Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.
Treatment, Subject
View SamplesWe report Illumina next generation RNA sequencing (RNAseq) of NUP98-HOXA9 in vitro transformed murine LSKs upon genetic deletion of Mll1. These gene expression data illustrate that Mll1 regulates Hoxa, Hoxb and Meis1 expression in NUP98-HOXA9 transformed murine BM cells. Overall design: RNAseq comparing Mll1 homozygous knockout cells to Mll1 flox/flox control
NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis.
Cell line, Treatment, Subject
View SamplesPrevious studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma.
Impact of ischemia and procurement conditions on gene expression in renal cell carcinoma.
Specimen part, Treatment, Subject
View SamplesDouble Hit Lymphoma (DHL) were treated with the BRD4 inhibitor 100 nM CPI203 for 6h
The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma.
Specimen part, Cell line, Subject
View SamplesWe report Illumina next generation RNA sequencing (RNAseq) of MLL-AF9 in vitro transformed murine LSKs upon genetic deletion of Mof. These gene expression data illustrate that Mof regulates the expression of genes involved in DNA damage response and chromatin stability in MLL-AF9 transformed cells. Overall design: RNAseq comparing Mof homozygous knockout cells to Mof wild type control
Histone Acetyltransferase Activity of MOF Is Required for <i>MLL-AF9</i> Leukemogenesis.
Cell line, Treatment, Subject
View SamplesSolid tumors are less oxygenated than normal tissues, and for this reason the cancer cells have developed several molecular mechanisms of adaptation to hypoxic environment. Moreover, his poor oxygenation is a major indicator of an adverse prognosis and leads resistance to standard anticancer treatment. Previous reports from this laboratory showed an involvement of Che-1/AATF (Che-1) in cancer cell survival under stress conditions, and on the basis of these observations, we hypothesized that Che-1 might have a role in the response of cancer cells to hypoxia. Methods: The human colon adenocarcinoma cell line HCT116 depleted or not for Che-1 by siRNA, was subjected to normoxic and hypoxic conditions to perform studies about the role of this protein in metabolic adaptation and cell proliferation. The expression of Che-1 under normoxia or hypoxia was detected using western blot assays; cell metabolism was assessed by NMR spectroscopy and functional assays. Further molecular studies were performed by RNA seq, qRT-PCR and ChIP analysis. Results: In this paper we report that Che-1 expression is required for the adaptation of the cells to hypoxia, playing and important role in metabolic modulation. Indeed, Che-1 depletion impacted on glycolysis by altering the expression of several genes involved in the response to hypoxia by modulating the levels of HIF-1alpha. Conclusions: These data demonstrate a novel player in the regulation of a HIF1alpha in response to hypoxia. We found that the transcriptional down-regulation of a members of E3 ubiquitin ligase family SIAH2 by Che-1, produces a failure in the degradation by the hydroxylase PHD3 with a decrease in HIF-1alpha levels during hypoxia. Overall design: The human colon adenocarcinoma cell line HCT116 depleted or not for Che-1 by siRNA was profiled for mRNA high-troughput sequencing (RNA-seq)
Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif-1α stabilization.
Cell line, Subject
View Samples