refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2169 results
Sort by

Filters

Technology

Platform

accession-icon GSE5475
Genome-wide analysis of PPAR activation in murine small intestine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The peroxisome proliferator-activated receptor alpha (PPAR) is a fatty acid-activated transcription factor that governs a variety of biological processes. Little is known about the role of PPAR in the small intestine. Since this organ is frequently exposed to high levels of PPAR ligands via the diet, we set out to characterize the function of PPAR in small intestine using functional genomics experiments and bioinformatics tools. PPAR was expressed at high levels in both human and murine small intestine. Detailed analyses showed that PPAR was expressed highest in villus cells of proximal jejunum. Microarray analyses of total tissue samples revealed, that in addition to genes involved in fatty acid and triacylglycerol metabolism, transcription factors and enzymes connected to sterol and bile acid metabolism, including FXR and SREBP1, were specifically induced. In contrast, genes involved in cell cycle and differentiation, apoptosis, and host defense were repressed by PPAR activation. Additional analyses showed that intestinal PPAR dependent gene regulation occurred in villus cells. Functional implications of array results were corroborated by morphometric data. The repression of genes involved in proliferation and apoptosis was accompanied by a 22% increase in villus height, and a 34% increase in villus area of wild-type animals treated with WY14643. This is the first report providing a comprehensive overview of processes under control of PPAR in the small intestine. We show that PPAR is an important transcriptional regulator in small intestine, which may be of importance for the development of novel foods and therapies for obesity and inflammatory bowel diseases.

Publication Title

Genome-wide analysis of PPARalpha activation in murine small intestine.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE6864
Gene expression regulation of transporters and phase I/II metabolic enzymes in murine small intestine during fasting
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Gene expression regulation of transporters and phase I/II metabolic enzymes in murine small intestine during fasting

Publication Title

Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE12337
Transcriptomic analysis of PPARalpha-dependent alterations during cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Findings suggest that PPARalpha plays a decisive role in the development of hypertrophy, affecting the functional outcome of the heart. Unfortunately, information on the nature of PPARalpha-dependent processes in cardiac hypertrophy is fragmentary and incomplete.

Publication Title

Transcriptomic analysis of PPARalpha-dependent alterations during cardiac hypertrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045876
Restoration of Progranulin Expression Rescues Cortical Neuron Generation in Induced Pluripotent Stem Cell Model of Frontotemporal Dementia
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To understand how haploinsufficiency of progranulin (PGRN) protein causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSC) from patients carrying the GRNIVS1+5G>C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD and known to express PGRN. Although generation of neuroprogenitors was unaffected, their further differentiation into neurons, especially CTIP2-, FOXP2- or TBR1-TUJ1 double positive cortical neurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of PGRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNAseq analysis confirmed reversal of altered gene expression profile following genetic correction. Wnt signaling pathway, one of the top defective pathways in FTD-iPSC-derived neurons coupled with its reversal following genetic correction, makes it an important candidate. Therefore, we demonstrate for the first time that PGRN haploinsufficiency hampers corticogenesis in vitro. Overall design: We profiled 6 samples: two biological replicates for 3 conditions. Condition 1 consists of neuronal progeny derived from human Embryonic Stem Cells. Condition 2 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation. Condition 3 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation, genetically modified to correct the PGRN defect.

Publication Title

Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18586
Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We studied the effect of dietary fat type, varying in polyunsaturated/saturated fatty acid ratio's (P/S) on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1) or safflower oil (HF-SO; P/S 7.8) for 8 weeks. A low-fat palm oil diet (LF-PO; 10E% fat) was used as a reference. Additionally, we analyzed diet-induced changes in gut microbiota composition and mucosal gene expression. The HF-PO diet induced a higher body weight gain and liver triglyceride content compared to the HF-OO, HF-SO or LF-PO diet. In the intestine, the HF-PO diet reduced microbial diversity and increased the Firmicutes/Bacteroidetes ratio. Although this fits a typical obesity profile, our data clearly indicate that an overflow of the HF-PO diet to the distal intestine, rather than obesity itself, is the main trigger for these gut microbiota changes. A HF-PO diet-induced elevation of lipid metabolism-related genes in the distal small intestine confirmed the overflow of palm oil to the distal intestine. Some of these lipid metabolism-related genes were previously already associated with the metabolic syndrome. In conclusion, our data indicate that saturated fat (HF-PO) has a more stimulatory effect on weight gain and hepatic lipid accumulation than unsaturated fat (HF-OO and HF-SO). The overflow of fat to the distal intestine on the HF-PO diet induced changes in gut microbiota composition and mucosal gene expression. We speculate that both are directly or indirectly contributive to the saturated fat-induced development of obesity and hepatic steatosis.

Publication Title

Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE77685
Whole transcript expression profiling of umbilical cord- and bone marrow-derived stem cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mesenchymal stromal cells (MSCs) are multipotent stem cells with potent immunosuppressive and trophic support functions. Although bone marrow is considered the golden standard to isolate classical MSCs (BM-MSC), MSC-like cells are currently also derived from other, more easily accessible extra-embryonic tissues such as the umbilical cord. In this study we compared the gene expression profile of human Wharton's jelly explant-derived MSC cultures with two adult MSC populations derived from bone marrow, namely BM-MSC and multipotent adult progenitor cells (MAPC).

Publication Title

Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25263
Pneumococcal conjugate vaccination at birth induces robust recall responses at 9 months of age.
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The objective of this study was to compare recall responses to vaccine antigens at 3 months and 9 months of age in infants who were vaccinated at birth or at 1 month.

Publication Title

Pneumococcal conjugate vaccination at birth in a high-risk setting: no evidence for neonatal T-cell tolerance.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE41833
Expression profiles of primary bone marrow derived mouse macrophages untreated and treated with LPS or LPS+PGE
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The polarization of macrophages into an anti-inflammatory or regulatory phenotype plays an important role in resolving inflammation. PGE2 regulates macrophage polarization via a PKA dependent pathway. PKA phosphorylates SIKs, inhibiting their ability to phosphorylate CRTC3 in cells. This in turn allows CRTC3 to translocate to the nucleus where it acts as a co-activator with the transcription factor CREB to induce IL-10 transcription. In line with this we find that either genetic or pharmacological inhibition of SIKs mimics the effect of PGE2 on IL-10 production.

Publication Title

PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP174051
TNF induces Glucocorticoid Resistance by reshaping the GR Nuclear Cofactor Profile: Investigation of TNF mediated effects on the GR mediated gene expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Glucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates

Publication Title

TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP115022
Nuclear receptor Nur77 limits the macrophage inflammatory response by reprogramming mitochondrial metabolism (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Activation of macrophages by inflammatory stimuli leads to reprogramming of mitochondrial metabolism to support the production of pro-inflammatory cytokines. Hallmarks of this metabolic rewiring are downregulation of a-ketoglutarate formation via isocitrate dehydrogenase (IDH) and accumulation of glutamine-derived succinate, which enhances the inflammatory response via the activity of succinate dehydrogenase (SDH). Here, we identify the nuclear receptor Nur77 (Nr4a1) as a key regulator of the pro-inflammatory metabolic switch in macrophages. Nur77-deficient macrophages fail to downregulate IDH expression and accumulate higher levels of succinate and other downstream TCA cycle metabolites in response to an inflammatory stimulus. Consequently, these macrophages produce more nitric oxide and pro-inflammatory cytokines in an SDH-dependent manner. In vivo, bone marrow Nur77 deficiency exacerbates atherosclerosis development and leads to increased systemic succinate levels. In conclusion, Nur77 supports an anti-inflammatory metabolic state in macrophages that protects against chronic inflammatory diseases such as atherosclerosis. Overall design: Gene expression profiling by RNA-seq was performed in triplicate in RAW264.7 mouse macrophage stable cell lines with doxycycline-inducible overexpression of HA-tagged NUR77 or GFP as control.

Publication Title

Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact