NLRC5 is a member of the NLR family of proteins. The observation that NLRC5 is found in the nucleus prompted us to perform a gene array to identify putative target genes of NLRC5. We generated Jurkat T cell lines that stably express either the wild-type or mutant forms of NLRC5 harboring mutations in the nucleotide binding domain (NBD): Walker A (deficient in nucleotide binding), Walker B (deficient in nucleotide hydrolysis), and the combined Walker AB, carrying both mutations.
NLR family member NLRC5 is a transcriptional regulator of MHC class I genes.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.
Specimen part, Time
View SamplesThe results of this study indicate that stenotic fibroblasts exhibit an aberrant response to tissue stiffness with reduced MMP activity, leading to a perpetuous vicious circle of ever more fibrosis formation. Altering the microenvironment by LOX inhibition increases MMP activity and decreases ECM contraction, resulting in a potential anti-fibrotic agent for Crohns disease.
Fibrostenotic Phenotype of Myofibroblasts in Crohn's Disease is Dependent on Tissue Stiffness and Reversed by LOX Inhibition.
Sex, Specimen part, Disease, Subject
View SamplesThe peroxisome proliferator-activated receptor alpha (PPAR) is a fatty acid-activated transcription factor that governs a variety of biological processes. Little is known about the role of PPAR in the small intestine. Since this organ is frequently exposed to high levels of PPAR ligands via the diet, we set out to characterize the function of PPAR in small intestine using functional genomics experiments and bioinformatics tools. PPAR was expressed at high levels in both human and murine small intestine. Detailed analyses showed that PPAR was expressed highest in villus cells of proximal jejunum. Microarray analyses of total tissue samples revealed, that in addition to genes involved in fatty acid and triacylglycerol metabolism, transcription factors and enzymes connected to sterol and bile acid metabolism, including FXR and SREBP1, were specifically induced. In contrast, genes involved in cell cycle and differentiation, apoptosis, and host defense were repressed by PPAR activation. Additional analyses showed that intestinal PPAR dependent gene regulation occurred in villus cells. Functional implications of array results were corroborated by morphometric data. The repression of genes involved in proliferation and apoptosis was accompanied by a 22% increase in villus height, and a 34% increase in villus area of wild-type animals treated with WY14643. This is the first report providing a comprehensive overview of processes under control of PPAR in the small intestine. We show that PPAR is an important transcriptional regulator in small intestine, which may be of importance for the development of novel foods and therapies for obesity and inflammatory bowel diseases.
Genome-wide analysis of PPARalpha activation in murine small intestine.
Sex, Age, Specimen part
View SamplesGene expression regulation of transporters and phase I/II metabolic enzymes in murine small intestine during fasting
Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting.
Sex, Age, Specimen part
View SamplesTo study differentially expressed genes in neuro-ectodermal cell lines
Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration.
Sex, Specimen part
View SamplesIn order to understand the molecular mechanism behind Vulvar Intraepithelial Neoplasia (VIN), we have analyzed the gene expression profile of VIN lesions in comparison to controls.
HPV related VIN: highly proliferative and diminished responsiveness to extracellular signals.
Sex
View SamplesRenin, a key component in the regulation of blood pressure in mammals, is produced by the rare and highly specialized juxtaglomerular (JG) cells of the kidney. Although these cells line the media of the glomerular afferent arterioles and share some characteristics with contractile cells, they are filled with lysosome-like organelles where renin is activated and stored for regulated secretion in response to physiological and pathophysiological stimuli. Chronic stimulation of renin release results in a recruitment of new JG cells by the seeming conversion of adjacent smooth muscle cells along the afferent arterioles. Because JG cells rapidly de-differentiate when removed from the kidney, their developmental origin and the mechanism that explains their phenotypic plasticity remain largely unclear. In an effort to overcome this limitation, we have performed RNA expression analysis on four human renin-producing tumors. The most highly expressed genes that were common between the reninomas were subsequently used for in situ hybridization in mouse kidney. Our results add 40 new genes to the list that characterize renin-producing cells and reveal a significant variation in the expression patterns of developing, mature and recruited JG cells. Overall design: RNA-Seq was performed with a HiSeq 2000 on three biopsies of a first reninoma from Paris (Par1B1-B3), one biopsy from a reninoma from Montreal (Mon), two biopsies from a reninoma from Rotterdam (RotB1, B2), and a second reninoma from Paris (Par2) along with a biopsy from adjacent supposedly normal tissue from the same patient (Par2N).
Transcriptome Analysis of Human Reninomas as an Approach to Understanding Juxtaglomerular Cell Biology.
No sample metadata fields
View SamplesCrossing of hDMD mice that contain the full-length 2.3 Mb hDMD gene were crossed with dystrophin-deficient mdx mice and dystrophin and utrophin double-deficient mdx x utrn-/- mice resulted in a full rescue of the dystrophic features of these mice, as concluded from histological analysis. Analysis on Affymetrix gene chips demonstrated that also expression profiles of the dystrophic mice were normalized by crossing with transgenic hDMD mice. This confirms the full functionality of the hDMD transgene in mice.
Generation and characterization of transgenic mice with the full-length human DMD gene.
No sample metadata fields
View SamplesLMO2 overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as main pre-leukemic event. The effects of LMO2 overexpression on human T-cell development in vivo, however, are unknown. Here we report studies of a humanized mouse model transplanted with LMO2 transduced human hematopoietic stem and progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage although initially multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: 1) a block at the DN/ISP stage, 2) an accumulation of CD4+CD8+ double positive CD3- cells and 3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes
Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms.
Specimen part
View Samples