The IFN type I signature is present in over half of primary Sjgrens syndrome (pSS) patients and associated with higher disease-activity and autoantibody presence. Plasmacytoid dendritic cells (pDCs) are considered to be the source of enhanced IFN type I expression. The objective of this study was to unravel the molecular pathways underlying IFN type I bioactivity in pDCs of pSS patients.
Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary Sjögren's syndrome.
Sex, Specimen part, Disease, Disease stage
View SamplesDam identification (DamID) is a powerful technique to generate genome-wide maps of chromatin protein binding. Due to its high sensitivity it is particularly suited to study the genome interactions of chromatin proteins in small tissue samples in model organisms such as Drosophila. Here we report an intein-based approach to tune the expression level of Dam and Dam-fusion proteins in Drosophila by addition of a ligand to fly food. This helps to suppress toxic effects of Dam. In addition we describe a strategy for genetically controlled expression of Dam in a specific cell type in complex tissues. We demonstrate the utility of the latter by generating a glia-specific map of Polycomb in small samples of brain tissue. Overall design: RNA sequencing of 3 samples, each using 2 biological replicates.
Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila.
Sex, Specimen part, Subject
View SamplesReporter genes integrated into the genome are a powerful tool to reveal effects of regulatory elements and local chromatin context on gene expression. However, so far such reporter assays have been of low throughput. Here we describe a multiplexing approach for the parallel monitoring of transcriptional activity of thousands of randomly integrated reporters. More than 27,000 distinct reporter integrations in mouse embryonic stem cells, obtained with two different promoters, show ~1,000-fold variation in expression levels. Data analysis indicates that lamina-associated domains act as attenuators of transcription, likely by reducing access of transcription factors to binding sites. Furthermore, chromatin compaction is predictive of reporter activity. We also found evidence for cross-talk between neighboring genes, and estimate that enhancers can influence gene expression on average over ~20 kb. The multiplexed reporter assay is highly flexible in design and can be modified to query a wide range of aspects of gene regulation. Overall design: mRNA profiles of 11 mouse embryonic cell lines each harboring multiple barcoded reporter constructs with mouse PGK promoter integrated at random positions in the genome, single replicate.
Chromatin position effects assayed by thousands of reporters integrated in parallel.
Specimen part, Cell line, Subject
View SamplesThe spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased, and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts the degree of this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes. Overall design: RNAseq was performed in control, ?WAPL 3.3, ?WAPL 1.14, ?SCC4 and ?WAPL/?SCC4 cells in triplicate.
The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.
Cell line, Subject
View SamplesThe local protein composition of chromatin is important for the regulation of transcription and other functions. By integrative analysis of genome-wide binding maps of 53 broadly selected chromatin components in Drosophila cells, we show that the genome is segmented into five principal chromatin types that are defined by unique, yet overlapping combinations of proteins, and form domains that can extend over >100 kb. We identify a novel repressive chromatin type that covers about half of the genome and lacks classic heterochromatin markers. Furthermore, transcriptionally active euchromatin consists of two distinct types that differ in molecular organization and H3K36 methylation, and regulate distinct classes of genes. Finally, we provide evidence that the different chromatin types act as guides that help to target DNA-binding factors to specific subsets of their recognition motifs. These results uncover basic principles of chromatin organization in a higher eukaryote. For this study, we generated whole-genome DamID binding profiles of 45 chromatin proteins in Drosophila Kc167 cells. Additionally, we perused published binding data of 8 chromatin proteins and generated a binding profile of one exogenous (yeast) DNA binding factor in Kc167 cells. On the same array platform, we obtained ChIP-on-chip profiles of histone H3, H1, H3K9me2, H3K27me3, H3K4me2, and H3K79me3. See supplementary files below. Gene expression was measured by RNA tag profiling. See GeneCounts supplementary file below. Overall design: [1] RNA tag sequences were optained on an Illumina GAII with the digital gene expression (DGE) module from duplicate RNA samples. [2] All DamID and ChIP experiments were done in Drosophila Kc167 cells in duplicate. Samples were hybridized to 380k NimbleGen arrays with 300 bp probe spacing. Every experiment was done in duplicate in the reverse dye orientation, where Dam-fusion material was hybridized over Dam-only material. For ChIP, immunoprecipitated material was hybridized over ChIP input material. 18 previously-submitted Samples were included in this study. 10 of 18 Samples have been renormalized for the GSE22069 study: GSM509087, GSM509088, GSM509089, GSM509090, GSM509091, GSM509092, GSM509093, GSM509094, GSM509095, GSM509096 New GSM accession numbers have been issued for these 10 samples. 8 of 18 Samples are identical in the original studies and in GSE22069: GSM423290, GSM423291, GSM423298, GSM423299, GSM493592, GSM493593, GSM509085, GSM509086 [3] The genomic locations in files GSE22069_norm_aggregated_discretized_tiling_arrays.txt and GSE22069_norm_aggregated_tiling_arrays.txt are relative to FlyBase release 5 (BDGP R5/dm3).
Systematic protein location mapping reveals five principal chromatin types in Drosophila cells.
Cell line, Treatment, Subject
View SamplesEukaryotic mRNAs undergo a cycle of transcription, nuclear export, and degradation. A major challenge is to obtain a global, quantitative view of these processes. Here we measured the genome-wide nucleocytoplasmic dynamics of mRNA in Drosophila cells by metabolic labeling in combination with cellular fractionation. By mathematical modeling of these data we determined rates of transcription, export and cytoplasmic decay for >5,000 genes. We characterized these kinetic rates and investigated links with mRNA features, RNA-binding proteins (RBPs) and chromatin states. We found prominent correlations between mRNA decay rate and transcript size, while nuclear export rates are linked to the size of the 3''UTR. Transcription, export and decay rates are each associated with distinct spectra of RBPs. Specific classes of genes, such as those encoding cytoplasmic ribosomal proteins, exhibit characteristic combinations of rate constants, suggesting modular control. Overall, transcription and decay rates have a major impact on transcript abundance, while nuclear export is of minor importance. Finally, correlations between rate constants suggest global coordination between the three processes. Our approach should be generally applicable to other cell systems and provides insights into the genome-wide nucleocytoplasmic kinetics of mRNA. Overall design: 24 RNA-seq experiments comprising 2 biological replicates: pre-exsiting nuclear mRNA time 0h (samples 1&13), pre-exsiting nuclear mRNA time 0.5h (samples 2&14), pre-exsiting nuclear mRNA time 1.5h (samples 3&15) , pre-exsiting nuclear mRNA time 3h (samples 4&16), pre-exsiting nuclear mRNA time 5h (samples 5&17), pre-exsiting nuclear mRNA time 7.5h (samples 6&18), pre-exsiting cytoplasmic mRNA time 0h (samples 7&19), pre-exsiting cytoplasmic mRNA time 0.5h (samples 8&20), pre-exsiting cytoplasmic mRNA time 1.5h (samples 9&21) , pre-exsiting cytoplasmic mRNA time 3h (samples 10&22), pre-exsiting cytoplasmic mRNA time 5h (samples 11&23), pre-exsiting cytoplasmic mRNA time 7.5h (samples 12&24)
Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells.
Cell line, Treatment, Subject
View SamplesIn mammals, the nuclear lamina interacts with hundreds of large genomic regions, termed lamina-associated domains (LADs) that are generally in a transcriptionally repressed state. Lamins form the major structural component of the lamina and have been reported to bind DNA and chromatin. Here we systematically evaluated whether lamins are necessary for the peripheral localization of LADs in murine embryonic stem cells. Surprisingly, removal of essentially all lamins did not have any detectable effect on the genome-wide interaction pattern of chromatin with the inner nuclear membrane. This suggests that other components of the inner nuclear membrane mediate these interactions. Overall design: 2 samples, each with a biological replicate: wt mESC, B type lamin null (dKO) dKO mESC
Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells.
No sample metadata fields
View SamplesWe used microarrays to identify mucosal gene signatures predictive of response to infliximab (IFX) in patients with inflammatory bowel disease (IBD) and to gain more insight into the pathogenesis of IBD.
Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment.
Specimen part, Disease
View SamplesThe aim of this work was to identify genes induced by IL-9 in the colon of IL-9-tarnsgenic mice (Tg5). Therefore, we performed a comprehensive study of the genes expressed in the colon of IL-9 transgenic and wild type FVB mice, taking advantage of the affymetrix microarray technology.
IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa.
No sample metadata fields
View SamplesThe lack of suitable animal models reflecting chronically relapsing inflammation and tissue remodeling have hindered fibrosis research in inflammatory bowel diseases (IBD). This study investigated changes in connective tissue in a chronic murine model using different cycles of dextran sodium sulphate (DSS) to mimic the relapsing nature of the disease.
Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn's disease.
Sex, Age, Specimen part
View Samples