This SuperSeries is composed of the SubSeries listed below.
Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis.
Specimen part, Disease
View SamplesIn this study, we investigated if miRNA expression in UC mucosa is altered and correlated our findings with mucosal mRNA expression. Integration of mRNA and miRNA expression profiling may allow the identification of functional links between dysregulated miRNAs and their predicted target mRNA.
Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis.
Specimen part, Disease
View SamplesMicroarrays were used to investigate the the effect of vedolizumab (VDZ) therapy on colonic mucosal gene expression in UC patients and compared the changes to those observed with infliximab (IFX) therapy.
Effect of vedolizumab (anti-α4β7-integrin) therapy on histological healing and mucosal gene expression in patients with UC.
Specimen part
View SamplesMicroarrays were used to analyze the gene expression in endoscopic-derived intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) and controls
Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease.
Specimen part, Disease
View SamplesGenetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting an essential driver role for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34+ thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from GSI treated T-ALL cell lines, ex vivo isolated Notch active CD34+ and Notch inactive CD4+CD8+ thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publically available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T-cell context. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way towards development of novel therapeutic strategies that target hyperactive Notch1 signaling in human T-cell acute lymphoblastic leukemia. Overall design: CUTLL1 cell lines were treated with Compound E (GSI) or DMSO (solvent control). Cells were collected 12 h and 48 h after treatment. This was performed for 3 replicates. RNA-sequencing was performed on these samples.
The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.
No sample metadata fields
View SamplesGlucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates
TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.
Specimen part, Cell line, Treatment, Subject
View SamplesT-cell/histiocyte rich B cell lymphoma (THRBL) and nodular lymphocyte predominant Hodgkin's lymphoma (NLPHL) share some morphological characteristics, including a prominent stromal reaction, but display a markedly different prognosis. To investigate the difference between the stromal reactions of these lymphomas at the molecular level, we performed microarray expression profiling on a series of THRBL and NLPHL cases.
T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response.
Sex, Specimen part
View SamplesThis experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesMesenchymal progenitor cells can be differentiated in vitro into myotubes that exhibit many characteristic features of primary mammalian skeletal muscle fibers. However, in general, they do not show the functional excitation-contraction coupling or the striated sarcomere arrangement typical of mature myofibers. Epigenetic modifications have been shown to play a key role in regulating the progressional changes in transcription necessary for muscle differentiation. In this study, we demonstrate that treatment of murine C2C12 mesenchymal progenitor cells with 10 M of the DNA methylation inhibitor 5-azacytidine (5AC) promotes myogenesis, resulting in myotubes with enhanced maturity as compared to untreated myotubes. Specifically, 5AC treatment resulted in the upregulation of muscle genes at the myoblast stage while at later stages nearly 50 % of the 5AC-treated myotubes displayed a mature, well-defined sarcomere organization as well as spontaneous contractions that coincided with action potentials and intracellular calcium transients. Both the percentage of striated myotubes and their contractile activity could be inhibited by 20 nM TTX, 10 M ryanodine and 100 M nifedipine, suggesting that action potential-induced calcium transients are responsible for these characteristics. Our data suggest that genomic demethylation induced by 5AC overcomes an epigenetic barrier that prevents untreated C2C12 myotubes from reaching full maturity.
Epigenetics: DNA demethylation promotes skeletal myotube maturation.
Cell line, Treatment
View SamplesTo understand how atypical bHLH, INCREASED LEAF INCLINATION1 (ILI1)-BINDING bHLH-1 (IBH1) (At2g43060), and close homologue, IBH1-like1 (IBL1) (At4g30410), interact to regulate cell elongation, genome-wide RNA-Seq expression analyses of IBH1 and IBL1 gain-(IBH1OE, IBL1OE) and loss-of-function (ibh1 (SALK 049177), ibl1(SALK 119457)) mutants were conducted. Overall design: For loss-of-function mutant, homozygous ibh1(SALK 049177) and ibl1(SALK 119457) were compared to wild type (Col). For gain-of-function mutant, homozygous 35Spro:IBH1-GFP and 35Spro:IBL1-GFP were compared to wild type (Col). Total RNAs were extactced from seedling of each genotypes. For each genotype two biological replicates were sequenced.
Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop.
Specimen part, Subject
View Samples