Murine MafB/c-MAF double KO (Maf-DKO) primary macrophages are known for their unlimited non-tumorigenic self-renewal ability (Aziz et al., 2009). In an in vitro screen for cytokines and small molecules we identified Niacinamide (NAM) a potent inhibitor of their proliferative potential characterized by a reversible cell cycle arrest.
SIRT1 regulates macrophage self-renewal.
Specimen part
View SamplesMicroglia play important roles in life-long brain maintenance and in pathology, but are also crucial in the developing central nervous system; yet their regulatory dynamics during development have not been fully elucidated. Genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development reveal that microglia undergo three temporal developmental stages in synchrony with the brain: early, pre-, and adult microglia, which are under the control of distinct regulatory circuits. Knockout of the transcription factor MafB caused disruption of homeostasis in adulthood and increased inflammation. Environmental perturbations, such as the microbiome or prenatal immune activation, led to dysregulation of the developmental program, particularly in terms of inflammation. Together, our work identifies a stepwise developmental program of microglia integrating immune response pathways that may be associated with several neurodevelopmental disorders. Overall design: Yolk sac progenitors (CD45+CD11B+CX3CR1-GFP+), microglia from early brain (CD45+CD11B+CX3CR1-GFP+), and microglia from later stages (CD45intCD11BintCX3CR1-GFP+) were isolated from CX3CR1+ C57BL/6J mice or microglia from perturbation models (CD45intCD11Bint) from mice of C57BL/6J background
Microglia development follows a stepwise program to regulate brain homeostasis.
Specimen part, Cell line, Treatment, Subject
View SamplesWe established and characterized a new recessive mutant mouse line kta41 with a point mutation in Scube3 at position 882. The mutant line was detected by screening for morphological abnormalities in the Munich ENU-mutagenesis program. The mutation was mapped by microsatellite markers to mouse chromosome 17, between markers D17MIT29 and D17MIT101. Candidate gene approaches failed due to the low recombination frequency and the high number of genes within the mapped interval. Whole genome sequencing approaches revealed a C to A transversion on position 882 in Scube3 that leads to a missense mutation in the protein (Asn294Lys). We did a broad phenotypic analysis of the mutant mouse line in the German Mouse Clinic (GMC), and followed up the found alterations by detailed phenotypic characterization. Scube3-kta41-/- mice show a series of phenotypic alterations, mainly in the skeleton, behavior and neurological abnormalities as well as changes in physiology, metabolism and immune status.
The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.
Sex, Age
View SamplesAnalysis of the expression profiles of MCF7 cells transduced with a control shRNA and an TSC2-targeted shRNA (leading to tuberin depletion).
Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness.
Cell line
View SamplesIn the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability.
Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae.
No sample metadata fields
View Samplesthe nuclear pore complex (NPC) is emerging as an important mediator of cellular processes beyond molecule transport, including control of gene expression, replication and DNA repair.
The Nup84 complex coordinates the DNA damage response to warrant genome integrity.
No sample metadata fields
View SamplesPhysiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO2-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO2 and 21% O2. This observation indicated that respiratory metabolism is more sensitive to CO2 than fermentative metabolism. Consistent with the more pronounced physiological effects of CO2 in respiratory cultures, the number of CO2-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO2 concentrations. This is consistent with an uncoupling effect of CO2 and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO2 included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase
Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations.
No sample metadata fields
View SamplesTranscription is a major contributor to genome instability. A main cause of transcription-associated instability relies on the capacity of transcription to stall replication. Such genome instability is increased in RNAPII mutants.
RNA polymerase II contributes to preventing transcription-mediated replication fork stalls.
No sample metadata fields
View SamplesPurpose: The aim of this study is to evaluate the global gene expression induced by OGG1-BER product 8-oxoG in mouse airways. Methods: RNA extracted from individual mouse lungs (experimental group: n=5) were pooled and a total 1 µg RNA was used for Next-Generation Sequencing (NGS) analyses on an Illumina HiSeq 1000 sequencing system. Sequence analysis were performed in duplicate. First- and second-strand synthesis, adapter ligation and amplification of the library were performed using the Illumina TruSeq Sample Preparation Kit as recommended by the manufacturer (Illumina). Library quality was evaluated by using an Agilent DNA-1000 chip on an Agilent 2100 Bioanalyzer. Library DNA templates were quantitated by qPCR using known reference starndards. Cluster formation of the library of DNA templates was performed using the TruSeq PE Cluster Kit v3 (Illumina) and the Illumina cBot workstation. Paired-end, 50-base sequencing was performed with a TruSeq SBS kit v3 (Illumina) on the Illumina HiSeq 1000 by protocols defined by the manufacturer. Base call conversion to sequence reads was performed using CASAVA-1.8.2. Sequence data were analyzed with the Bowtie2, Tophat2 and GFOLD programs. Processed data are presented as reads per kilobase transcript per million (RPKM), normalized to the experimental control (RNA from saline-challenged lungs) and reported as fold change (test/control). Results: We mapped an average of 24.76 million sequence reads per sample and identified 23,337 transcripts in total RNA extracted from lungs of Balb/cJ mice as described in Methods. Approximately 10% of the transcripts showed differential expression between the saline-challenged control and 8-oxoguanine-challeged mouse lungs, with a fold change =3.0. We validated the expression changes of 7 selected pro-inflammatory cytokines and chemokines of interest for our studies by qRT-PCR. Hierarchical clustering followed by Protein ANalysis THrough Evolutionary Relationships database (PANTHER) analysis of differentially expressed genes. Results showed overrepresentation of various biological functions (GO terms) including immune system process (GO:0002376; p=5.24e-12) among others. Pathway analysis (PANTHER) indicated that the most overrepresented pathway was inflammation mediated by chemokine and cytokine (P00031, p=<0.01). In addition to gene expression analysis, we confirmed OGG1•8-oxoG-dependent RAS activation in lungs by active RAS pull-down assays, airways neutrophil accumulation by bronchoalveolar lavage fluid (BALF) differential cell counts and airway inflammation by histological examination (H&E staining) of lung sections. Conclusions: This is the first study at the whole-transcriptome level to show induction of innate immune response gene expression in mouse lungs after exposure to OGG1-BER product 8-oxoG. Overall design: Balb/cJ mice (5 per group) were intranasally challenged with 8-oxoguanine (1 µM, 60 µl) for 30, 60 and 120 min. Control group mice were intranasally challenged with saline (60 µl). RNA from individual mice whithin the same group was pooled and subjected to deep-sequencing analysis in duplicate using NGS on an Illumina HiSeq 1000 sequencing system. After alignment and processing, the resulting RPKM from treatment groups (8-oxoG-challenged) were normalized to the control group (saline-challenged).
The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma.
No sample metadata fields
View SamplesPurpose: The aim of this study is to test whether global gene expression induced by multiple challenges with OGG1-BER product 8-oxoG in mouse airways is linked to airway remodeling. Methods: RNAs extracted from individual mouse lungs (experimental group: n=5) were pooled and a total 1 µg RNA was used for Next-Generation Sequencing (NGS) analyses on an Illumina HiSeq 1000 sequencing system. Sequence analyses were performed in duplicate. First- and second-strand synthesis, adapter ligation and amplification of the library were performed using the Illumina TruSeq Sample Preparation Kit as recommended by the manufacturer (Illumina). Library quailty was evaluated by using an Agilent DNA-1000 chip on an Agilent 2100 Bioanalyzer. Library DNA templates were quantitated by qPCR using known reference standards. Cluster formation of the library of DNA templates was performed using the TruSeq PE Cluster Kit v3 (Illumina) and the Illumina cBot workstation. Paired-end, 50-base sequencing was performed with a TruSeq SBS kit v3 (Illumina) on the Illumina HiSeq 1000 by protocols defined by the manufacturer. Base call conversion to sequence reads was performed using CASAVA-1.8.2. Sequence data were analyzed with the Bowtie2, Tophat2 and GFOLD programs. Processed data are presented as reads per kilobase transcript per million (RPKM), normalized to the experimental control (RNA from saline challenged lungs) and reported as fold change (test/control). Results: We mapped an average of 31.41 million sequence reads per sample and identified 23,337 transcripts in total RNA extracted from lungs of Balb/cJ mice as described in Methods. Approximately 14% of the transcripts showed differential expression between the saline-challenged control and 8-oxoguanine-challeged mouse lungs, with a fold change =3.0. We validated the expression changes of 18 selected EMT-related genes of interest for our studies by qRT-PCR. Hierarchical clustering followed by Protein ANalysis THrough Evolutionary Relationships database (PANTHER) analysis of differentially expressed genes was done using GENE-E online software from Broad Institute (http://www.broadinstitute.org/cancer/software/GENE-E/). Results from PANTHER analysis of upregulated transcripts (fold change =3.0) showed overrepresentation of various biological functions (GO terms) including developmental process (GO:0032502, P=4.58E-33), system development (GO:0048731, P=9.16E-33), cellular process (GO:0009987, P= 5.52E-31), cell adhesion (GO:0007155, P= 8.63E-28) among others. Pathway analysis (PANTHER) indicated that the most overrepresented pathways were: cadherin signaling (P00012, P=6.62E-07), wnt signaling (P00057, P= 5.81E-06), integrin signaling (P00034, P= 1.09E-05) among others. In addition to gene expression analysis, we confirmed airway remodeling by histological examination (Hematoxylin and Eosin, Masson's trichrome staining) of lung sections at seven days from the last challenge (day 11). Conclusions: This is the first study showing a link between gene expression at whole-transcriptome level induced by chronic OGG1-BER (mimicked by multiple challenges with 8-oxoG) and airway remodeling, supported by histological structural changes in lungs. Overall design: Balb/cJ mice (5 per group) were intranasally challenged with 8-oxoguanine (1 µM, 60 µl) for three times at days 0, 2 and 4. Control group mice were intranasally challenged with saline (60 µl). At 30, 60 and 120 min after the third challenge (day 4), mice were sacrificed and lungs were processed for RNA extraction. RNAs from individual mice within the same group were pooled and subjected to deep-sequencing analysis in duplicate using NSG on an Illumina HiSeq 1000 sequencing system. After alignment and processing, the resulting RPKM from treatment groups (8-oxoG-challenged) were normalized to control group (saline-challenged).
The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma.
No sample metadata fields
View Samples