refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 217 results
Sort by

Filters

Technology

Platform

accession-icon GSE55606
Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Molecular profiling of infiltrating monocyte-derived macrophages versus resident kupffer cells following acute liver injury

Publication Title

Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury.

Sample Metadata Fields

Specimen part, Disease, Time

View Samples
accession-icon GSE109371
Glucose-dependent insulinotropic polypeptide ameliorates obesity and insulin resistance by attenuating S100A8/9 in myeloid cells
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Our data mark GIP as a beneficial immunoregulator during obesity and suggest a novel untapped therapeutic potential for specific targeted GIP analogs.

Publication Title

Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE56444
Macrophage-restricted Interleukin-10 receptor-, but not IL-10 deficiency causes severe spontaneous colitis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Interleukin-10 (IL-10) is a pleiotropic anti-inflammatory cytokine produced and sensed by most hematopoietic cells. Genome wide association studies and experimental animal models point at a central role of the IL-10 axis in Inflammatory Bowel Diseases. Here we investigated the importance of intestinal macrophage production of IL-10 and their IL-10 exposure, as well as the existence of an IL-10-based autocrine regulatory loop in the gut. Specifically, we generated mice harboring IL-10 or IL-10 receptor (IL-10R) mutations in intestinal lamina propria-resident chemokine receptor CX3CR1hi-expressingmacrophages. We found macrophage-derived IL-10 dispensable for gut homeostasis and maintenance of colonic T regulatory cells. In contrast, loss of IL-10 receptor expression impaired the critical conditioning of these monocyte-derived macrophages, but resulted in spontaneous development of severe colitis. Collectively, our results highlight IL-10 as a critical homeostatic macrophage-conditioning factor in the colon and define intestinal CX3CR1hi macrophages as a decisive factor that determines gut health or inflammation.

Publication Title

Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE67953
Tumor-Associated Macrophages Promote Colorectal Tumor Development Through Remodeling of Its Extracellular Matrix
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Ly6Chi monocytes massively infiltrate the CRC-tumors by virtue of their CCR2 expression and further mature into Ly6CloF4/80hi CD64hiMHCII+ TAM upon tumor progression. We demonstrated that TAM-deficient tumors display impaired tumor-growth via alternation of the ECM morphology, structure and composition. Using advanced high-resolution optical imaging to visualize the tumoral-ECM macromolecule network together with transcriptomic and proteomic approaches we unraveled that TAM play critical role in the deposition, linearization and cross-linking of collagenous ECM. Remarkably, we show that cues embedded in ECM by TAM-mediated remodeling activity promote tumor cell proliferation in vitro and orthotopic tumor development in vivo.

Publication Title

Tumor macrophages are pivotal constructors of tumor collagenous matrix.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9447
Alpha2-6-linked Sialic Acids on N-Glycans Modulate Carcinoma Differentiation In Vivo
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Sialic acids on vertebrate cell surfaces mediate many biological roles. Altered expression of certain sialic acid types or their linkages can have prognostic significance in human cancer. A classic but unexplained example is enhanced 2-6-sialylation on N-glycans, resulting from over-expression of the Golgi enzyme -galactoside:2-6-sialyltransferase (ST6Gal-I). Previous data supporting a role for the resulting Sia2-3Gal1-4GlcNAc (Sia6LacNAc) structure in tumor biology were based on in vitro studies in transfected carcinoma cells, in which increased Sia6LacNAc on 1-integrins enhanced their binding to ligands, and stimulated cell motility. Here we examine for the first time the in vivo role of the ST6Gal-I enzyme in the growth and differentiation of spontaneous mammary cancers in mice transgenic for an MMTV-promoter-driven polyoma-middle-T antigen, a tumor in which beta1-integrin function is important for tumorigenesis, and in maintaining the proliferative state of tumor cells. Tumors induced in St6gal1 null animals were more differentiated in comparison to those in the wild-type background, both by histological analysis and by protein expression profiles. Furthermore, we show the St6gal1 null tumors have selectively altered expression of genes associated with focal adhesion signaling, and have decreased phosphorylation of FAK, a downstream target of 1-integrins. This first in vivo evidence for a role of ST6Gal-I in tumor progression was confirmed using a novel approach, which conditionally restored St6gal1 in cell lines derived from the null tumors. These findings indicate a role for ST6Gal-I as a mediator of tumor progression, with its expression causing a less differentiated phenotype, via enhanced 1-integrin function.

Publication Title

alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE42101
Ly6Chi monocytes in the inflamed colon give rise to pro-inflammatory effector cells and migratory antigen presenting cells.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We showed different function of monocyte derived cells in the lamina propria of the colon under steady state and inflammatory conditions.

Publication Title

Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP127247
ICAMs are not obligatory for functional immune synapses between naïve CD4 T cells and lymph node DCs
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The quantitative deep bulk MARS-seq analysis demonstrated that DCs from ICAM-1/2 double knockout (DKO) chimeric LNs display similar transcriptomes to those of WT DCs in both their resting and CD40 mAb activated states. Overall design: Transciptome analysis of activated and resting classical DCs from either WT or ICAM-1/2 DKO chimeric mice was performed. DC cells were isolated from popliteal lymph nodes and sorted according to the following markers: CD45, CD11c and MHC-II

Publication Title

ICAMs Are Not Obligatory for Functional Immune Synapses between Naive CD4 T Cells and Lymph Node DCs.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE42325
Expression data from in vitro derived dendritic cells generated in the presence of FLT3-L from wt and miR-142-/- BM cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

2 types of dendritic cells (DCs) can be generated in vitro in the presence of Flt3-L: CD4+ equivalent CD24- DCs and CD8+ equivalent CD24+ DCs. miR-142-/- mice show a severe defect in the generation of CD4+ equivalent CD24- DCs. To understand the underlying mechanism, RNA expression was analyzed by Affymetrix microarray from the 2 in vitro subtypes of DCs derived from miR-142+/+ and miR-142-/- bone marrow cells.

Publication Title

Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE118278
Klotho suppresses colorectal cancer through modulation of the unfolded protein response
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Study the role of klotho as a tumor suppressor in colorectal cancer.

Publication Title

Klotho suppresses colorectal cancer through modulation of the unfolded protein response.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP061276
Maize (Zea mays) leaf transcriptome analysis under abiotic stress in wild type and RNA Polymerase IV mutant
  • organism-icon Zea mays
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Plants have developed complex mechanisms to respond and adapt to abiotic stresses, coupling elaborate modulation of gene expression together with the preservation of genome stability. Epigenetic mechanisms - DNA methylation, chromatin modifications and non coding RNAs - were shown to play a fundamental role in stress-induced gene regulation and may also result in genome destabilization, with the activation and/or the transcription of silenced transposons and retroelements, causing genome rearrangements and novel gene expression patterns. Maize leaf transcriptome was analyzed by total RNA-Seq in both B73 and rmr6 (PolIV mutant involved in siRNA biogenesis and in the RdDM pathway) after drought and salt stress application. Reference annotation based transcript assembly allowed the identification both of new expressed loci and splicing variants, improving the current maize transcriptome annotation. Many antisense transcripts matching on the opposite strand of annotated loci were also identified, while more than the 20% of transcripts represent non coding RNA belonging to four classes: siRNAs, shRNAs, lncRNAs and transposable elements (or their relics). Several lncRNAs are modulated by stress application while TE-related sequences are mainly expressed in rmr6 and up-regulated by the stress. Overall design: Total RNA-Seq analysis of maize leaves from wt and rmr6-1 mutant plants grown under 1) control conditions, 2) drought stress, 3) salt stress, 4) salt+drought stress. Each condition was investigated in triplicate after 10 days of treatment and after 7 days of recovery. Samples derived from replicates 2 and 3 were pooled and sequenced together

Publication Title

Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription.

Sample Metadata Fields

Treatment, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact