This SuperSeries is composed of the SubSeries listed below.
Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation.
Specimen part, Cell line, Treatment, Time
View SamplesDHS enahncers identify novel pathways in OB differentiation
Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation.
Cell line, Treatment
View SamplesBackground: Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells.
Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics.
Cell line, Treatment
View SamplesHeat shock protein 90 (Hsp90) is an emerging therapeutic target in cancer. We report that Hsp90 inhibitors selectively kill DLBCLs that are biologically dependent on the BCL6 transcriptional repressor. We examined the pharmacokinetics, toxicity and efficacy of PUH71, a recently developed purine scaffold Hsp90 inhibitor. PUH71 preferentially accumulated in tumors vs. normal tissues, and unlike the widely used benzoquinone Hsp90 inhibitors, displayed no signs of organ toxicity. PUH71 selectively and potently induced the regression of BCL6-dependent DLBCLs in vivo, through reactivation of key BCL6 target genes and apoptosis.
A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas.
No sample metadata fields
View SamplesActin dynamically shuttles between the nucleus and cytosplasm and regulates a wide range of transcriptional processes within the nucleus
Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes.
Specimen part, Cell line
View SamplesStudy of gene expression patterns of Drosophila melanogaster Sesb1 mutants compared to wild type
Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease.
Sex
View Sampleswe performed transcriptomic analysis of the RanBP9del1 mutant ovaries compared to wild type Overall design: explore the consequences of decreased nuclear actin on transcription
Nuclear Actin Is Required for Transcription during Drosophila Oogenesis.
Subject
View SamplesSialic acids on vertebrate cell surfaces mediate many biological roles. Altered expression of certain sialic acid types or their linkages can have prognostic significance in human cancer. A classic but unexplained example is enhanced 2-6-sialylation on N-glycans, resulting from over-expression of the Golgi enzyme -galactoside:2-6-sialyltransferase (ST6Gal-I). Previous data supporting a role for the resulting Sia2-3Gal1-4GlcNAc (Sia6LacNAc) structure in tumor biology were based on in vitro studies in transfected carcinoma cells, in which increased Sia6LacNAc on 1-integrins enhanced their binding to ligands, and stimulated cell motility. Here we examine for the first time the in vivo role of the ST6Gal-I enzyme in the growth and differentiation of spontaneous mammary cancers in mice transgenic for an MMTV-promoter-driven polyoma-middle-T antigen, a tumor in which beta1-integrin function is important for tumorigenesis, and in maintaining the proliferative state of tumor cells. Tumors induced in St6gal1 null animals were more differentiated in comparison to those in the wild-type background, both by histological analysis and by protein expression profiles. Furthermore, we show the St6gal1 null tumors have selectively altered expression of genes associated with focal adhesion signaling, and have decreased phosphorylation of FAK, a downstream target of 1-integrins. This first in vivo evidence for a role of ST6Gal-I in tumor progression was confirmed using a novel approach, which conditionally restored St6gal1 in cell lines derived from the null tumors. These findings indicate a role for ST6Gal-I as a mediator of tumor progression, with its expression causing a less differentiated phenotype, via enhanced 1-integrin function.
alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo.
Sex, Age, Specimen part
View SamplesIschemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.
Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.
Specimen part, Treatment
View SamplesDrought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at transcription levels in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme (NADP-ME) and pyruvate dehydrogenase (PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase (CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase (ALDH), ascorbate-dependant oxidoreductase (ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8 (HSP17.8) and dehydrin 3 (DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were likely constitutively expressed in drought-tolerant genotypes. Among them, 7 known annotated genes might enhance drought tolerance through signaling (such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP), anti-senescence (G2 pea dark accumulated protein GDA2) and detoxification (glutathione S-transferase (GST) pathways. In addition, 18 genes, including those encoding l-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C) and several chaperones, were differentially expressed in all genotypes under drought; thus, they were more likely general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.
Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage.
Specimen part, Treatment
View Samples