refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 54 results
Sort by

Filters

Technology

Platform

accession-icon GSE71219
Gene Expression in Human Vastus Lateralis after PrimaVie Shilajit Supplementation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Changes in Gene exporession after 8 weeks of PrimaVie Shilajit Supplementation were measured in vastus lateralis

Publication Title

The Human Skeletal Muscle Transcriptome in Response to Oral Shilajit Supplementation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP186927
AmpliSeq transcriptome profiling of human adipose tissue progenitor cell types
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Three different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location. Overall design: Transcriptomic profiling of 3 different progenitor cell types in subcutaneous and visceral adipose tissues derived from 5 obese patients (3X2X5=30 samples).

Publication Title

Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP123603
Single-cell analysis reveals heterogeneity of high endothelial venules and different regulation of genes controlling lymphocyte entry to lymph nodes
  • organism-icon Mus musculus
  • sample-icon 191 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

High endothelial venules (HEVs) are specialized blood vessels allowing recirculation of naïve lymphocytes through lymphoid organs. Here, using full length single-cell RNA sequencing, RNA-FISH, flow cytometry and immunohistofluorescence, we reveal the heterogeneity of HEVs in adult mouse peripheral lymph nodes (PLNs) under conditions of homeostasis, antigenic stimulation and after inhibition of lymphotoxin-b receptor (LTbR) signaling. We demonstrate that HEV endothelial cells are in an activated state during homeostasis, and we identify the genes characteristic of the differentiated HEV phenotype. We show that LTbR signaling regulates many HEV genes and pathways in resting PLNs, and that immune stimulation induces a global and temporary inflammatory phenotype in HEVs without compromising their ability to recruit naïve lymphocytes. Most importantly, we uncover differences in the regulation of genes controlling lymphocyte trafficking, Glycam1, Fut7, Gcnt1, Chst4, B3gnt3 and Ccl21a, that have implications for HEV function and regulation in health and disease. Overall design: Comparison of High Endothelial Cells and Blood Endothelial Cells from mouse lymph nodes under 4 different conditions with a total of 220 single cells.

Publication Title

Single-Cell Analysis Reveals Heterogeneity of High Endothelial Venules and Different Regulation of Genes Controlling Lymphocyte Entry to Lymph Nodes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE24369
Gene expression profiling of low-grade fibromyxoid sarcoma (LGFMS)
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of gene expression in 17 low-grade fibromyxoid sarcoma (LGFMS) samples compared to that of histologically similar tumors. LGFMS is characterized by the specific translocations t(7;16)(q33;p11) or t(11;16)(p11;p11) and corresponding fusion genes FUS-CREB3L2 or FUS-CREB3L1.

Publication Title

FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE38104
Retained heterodisomy is associated with high gene expression in hyperhaploid inflammatory leiomyosarcoma
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Retained heterodisomy is associated with high gene expression in hyperhaploid inflammatory leiomyosarcoma.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE37992
Retained heterodisomy is associated with high gene expression in hyperhaploid inflammatory leiomyosarcoma (Expression)
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression analysis of inflammatory leiomyosarcoma (ILMS) and conventional leiomyosarcoma (LMS).

Publication Title

Retained heterodisomy is associated with high gene expression in hyperhaploid inflammatory leiomyosarcoma.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP041584
The role of HIF-1 in beta-glucan induced response in myeloid cell
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

beta-glucan induced glycolysis in HIF-1 depedent manner. We reported that beta-glucan injection in mice led to upregulated glycolysis. HIF-1a plays a major role in this process. Overall design: Mice receives beta-glucan via ip for 4 days. Splenocytes were isolated for RNA sequencing.

Publication Title

mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94601
Molecular profiling of 159 primary lung carcinomas
  • organism-icon Homo sapiens
  • sample-icon 159 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Molecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644

Publication Title

Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE48984
Glutamine sensitivity analysis identifies the xCT antiporter as a common triple negative breast tumor therapeutic target.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A small number of tumor-derived cell lines have formed the mainstay of cancer therapeutic development, yielding drugs with impact typically measured as months to disease progression. To develop more effective breast cancer therapeutics, and more readily understand their potential clinical impact, we constructed a functional metabolic portrait of 46 independently-derived breast tumorigenic cell lines, contrasted with purified normal breast epithelial subsets, freshly isolated pleural effusion breast tumor samples and culture-adapted, non-tumorigenic mammary epithelial cell derivatives. We report our analysis of glutamine uptake, dependence, and identification of a significant subset of triple negative samples that are glutamine auxotrophs. This NCBI GEO submission comprises a small datasest generated to compare the expression profiles of the above nontumorigenic, purified normal and purified pleural effusion samples with 10 established breast cancer-derived cell lines. This dataset was subsequently merged with a previously published expression dataset derived from 45 independent breast cancer derived cell lines (Neve, et al 2006), and analyses contrasting various subsets of the merged dataset were published.

Publication Title

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE635
Identification of novel genomic determinants of cellular drug resistance in acute lymphoblastic leukemia.
  • organism-icon Homo sapiens
  • sample-icon 173 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Cellular drug resistance is associated with an unfavorable prognosis in pediatric acute lymphoblastic leukemia (ALL). To identify genes conferring resistance to antileukemic agents, we analyzed the expression of >12,700 genes in sensitive and resistant ALL cells obtained at diagnosis from 174 patients. This revealed 42, 59, 54 and 22 genes (P0.001) that were differentially expressed in B-lineage ALL that was sensitive versus resistant to prednisolone, vincristine, asparaginase or daunorubicin, respectively, with prediction accuracies of 71-76%. Notably, 149 of the discriminating genes have not been previously associated with resistance to these anticancer agents. These included carbohydrate-metabolism and transcription-associated genes for prednisolone, cytoskeleton and extracellular matrix genes for vincristine, ribosomal protein and translation-associated genes for asparaginase, and RAS signaling and nucleosome remodeling complex genes for daunorubicin. The identification of novel genomic determinants of cellular drug resistance provides new insights for overcoming drug resistance in acute lymphoblastic leukemia.

Publication Title

Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact