This SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of brown adipose tissue from Yin Yang 1 (YY1) brown fat specific knockout mice fed a high fat diet for 3 months. YY1 deficiency in brown adipose tissue leads to strong thermogenic deficiency. The goal was to identify the genes controlled by YY1 responsible of brown fat defective function.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of visceral white adipose tissue (EWAT) from Yin Yang 1 adipose-specific knockout mice exposed to cold (4C) for 4 days.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of subcutaneous adipose tissue (IWAT) from Yin Yang 1 brown fat specific knockout mice fed a high fat diet for 2 weeks. The goal was to identify a gene signature of IWAT browning in YY1 mutant mice.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesWe generated skeletal muscle-specific knockout mice lacking the transcription factor Yin Yang 1 (YY1) and analyzed expression patterns in the skeletal muscle these mice.
Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle.
Age, Specimen part
View SamplesAlthough recent studies support regenerative potential based on cardiac progenitor cells (CPCs), it remains unclear what cues regulate CPC fate. Using 2- and 3D-culture models, we demonstrate that the two most abundantly expressed matrix proteins in the heart, laminin and fibronectin, have opposite roles in CPC fate decision. CPCs on fibronectin showed predominantly nuclear localization of the transcriptional co-activator YAP and maintained proliferation. In contrast, seeding on laminin induced cytosolic retention and degradation of YAP and altered gene expression, which preceded decreased proliferation and enhanced lineage commitment. RNA-sequencing identified Plk2 as candidate target gene of YAP. Plk2 expression depended on YAP stability, was rapidly downregulated on laminin, and its regulation was sufficient to rescue and/or mimic the CPC response to laminin and fibronectin, respectively. These findings propose a novel role of Plk2 and identify an early molecular mechanism in matrix-instructed CPC fate with potential implications for therapeutic cardiac regeneration. Overall design: Expression profiling of cardiac progenitor cells in suspension and cultured on dishes coated with laminin or fibronectin or on non-coated dishes (biological triplicates each)
Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-β1 signaling.
Specimen part
View SamplesTranscriptome analyses of naive, effector and memory CD8 TCRP1A lymphocytes expressing or not an active form of the transcription factor Stat5.
Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-β1 signaling.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesKaryotypic instability, including numerical and structural chromosomal aberrations, represents a distinct feature of multiple myeloma (MM). 40-50% of patients displayed hyperdiploidy, defined by recurrent trisomies of non-random chromosomes. To characterize hyperdiploid (H) and nonhyperdiploid (NH) MM molecularly, we analyzed the gene expression profiles of 66 primary tumors, and used FISH to investigate the major chromosomal alterations. The differential expression of 225 genes mainly involved in protein biosynthesis, transcriptional machinery and oxidative phosphorylation distinguished the 28 H-MM from the 38 NH-MM cases. The 204 upregulated genes in H-MM mapped mainly to the chromosomes involved in hyperdiploidy, and the29% up-regulated genes in NH-MM mapped to 16q. The identified transcriptional fingerprint was robustly validated on a publicly available gene expression dataset of 64 MM cases; and the global expression modulation of regions on the chromosomes involved in hyperdiploidy was verified using a self-developed non-parametric statistical method. We showed that H-MM could be further divided into two distinct molecular and transcriptional entities, characterized by the presence of trisomy 11 and 1q-extracopies/chromosome 13 deletion, respectively. Our data reinforce the importance of combining molecular cytogenetics and gene expression profiling to define a genomic framework for the study of MM pathogenesis and clinical management.
Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma.
Sex
View Samples