Microarrays were used to analyze the gene expression in endoscopic-derived intestinal mucosal biopsies from patients with inflammatory bowel diseas (IBD) and controls
Genetic and Transcriptomic Bases of Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease.
Specimen part, Disease
View SamplesWhile pathogen-induced immunity is comparatively well characterized, far less is known about plant defense responses to arthropod herbivores. To date, most molecular-genetic studies of plant-arthropod interactions have focused on insects. However, plant-feeding (phytophagous) mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g., Lepidopteran larvae or aphids). The two-spotted spider mite, Tetranychus urticae, is among the most significant mite pests in agriculture. T. urticae is an extreme generalist that has been documented on a staggering number of plant hosts (more than 1,100), and is renowned for the rapid evolution of pesticide resistance. To understand reciprocal interactions between T. urticae and a plant host at the molecular level, we examined mite herbivory using Arabidopsis thaliana. Despite differences in feeding guilds, we found that transcriptional responses of A. thaliana to mite herbivory generally resembled those observed for insect herbivores. In particular, defense to mites was mediated by jasmonic acid (JA) biosynthesis and signaling. Further, indole glucosinolates dramatically increased mite mortality and development times. Variation in both basal and activated levels of these defense pathways might also explain differences in mite damage and feeding success between A. thaliana accessions. On the herbivore side, a diverse set of genes associated with detoxification of xenobiotics was induced upon exposure to increasing levels of in planta indole glucosinolates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.
Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite.
Age, Specimen part, Treatment
View SamplesPrdm12, a novel key regulator of the Nerve Growth Factor-TrkA signaling pathway, is required for nociceptive sensory neuron development Overall design: RNA-seq analysis in triplcate of the transcriptome of thoracic dorsal root ganglia with associated spinal cord of E11.5 Prdm12 KO and WT embryos.
Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA.
Specimen part, Cell line, Subject
View SamplesMicroarrays were used to investigate the the effect of vedolizumab (VDZ) therapy on colonic mucosal gene expression in UC patients and compared the changes to those observed with infliximab (IFX) therapy.
Effect of vedolizumab (anti-α4β7-integrin) therapy on histological healing and mucosal gene expression in patients with UC.
Specimen part
View SamplesWe used microarrays to identify mucosal gene signatures predictive of response to infliximab (IFX) in patients with inflammatory bowel disease (IBD) and to gain more insight into the pathogenesis of IBD.
Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment.
Specimen part, Disease
View SamplesIncreased levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) have been detected in fibrotic strictures in Crohns disease. In a murine model of chronic inflammation, fibrosis was associated with an increase in TIMP-1 and inhibition of matrix metalloproteinase (MMP)-mediated degradation. We investigated the effect of TIMP-1 deficiency on the colonic gene expression in acute and chronic murine models of colitis, using whole genome gene expression arrays.
Genetic Deletion of Tissue Inhibitor of Metalloproteinase-1/TIMP-1 Alters Inflammation and Attenuates Fibrosis in Dextran Sodium Sulphate-induced Murine Models of Colitis.
No sample metadata fields
View SamplesFibroblasts from PRDM12 patients and unaffected wildtype relatives were cultured until near confluency. The transcriptional profile of those cells was determined by mRNA sequencing and uncovered differential expression in several known pain and neurodevelopmental genes. Overall design: Transcriptome comparison of human PRDM12 mutant and wildtype fibroblasts
The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis.
Specimen part, Disease
View SamplesThe lack of suitable animal models reflecting chronically relapsing inflammation and tissue remodeling have hindered fibrosis research in inflammatory bowel diseases (IBD). This study investigated changes in connective tissue in a chronic murine model using different cycles of dextran sodium sulphate (DSS) to mimic the relapsing nature of the disease.
Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn's disease.
Sex, Age, Specimen part
View SamplesIn this study, we investigated if miRNA expression in UC mucosa is altered and correlated our findings with mucosal mRNA expression. Integration of mRNA and miRNA expression profiling may allow the identification of functional links between dysregulated miRNAs and their predicted target mRNA.
Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis.
Specimen part, Disease
View Samples