Lung cancers exhibit pronounced functional heterogeneity, confounding precision medicine. We studied how the cell-of-origin contributes to phenotypic heterogeneity following conditional expression of KrasG12D and loss of Lkb1 (Kras;Lkb1). Using progenitor cell type-restricted adenoviral-Cre to target cells expressing Surfactant Protein C (SPC) or club cell antigen 10 (CC10), we show that Ad5-CC10-Cre infected mice exhibit a shorter latency compared with Ad5-SPC-Cre cohorts. We further demonstrate that CC10+ cells are the predominant progenitors of adenosquamous carcinoma (ASC) tumors, and give rise to a wider spectrum of histotypes that includes mucinous and acinar adenocarcinomas. Transcriptome analysis shows ASC histotype-specific upregulation of proinflammatory and immunomodulatory genes. This is accompanied with an ASC-specific immunosuppressive environment, consisting of downregulated MHC genes, recruitment of CD11b+ Gr-1+ tumor-associated neutrophils (TANs) and decreased T-cell numbers. We conclude that progenitor cell-specific etiology influences the Kras;Lkb1-driven tumor histopathology spectrum and histotype-specific immune microenvironment.
Cell of Origin Links Histotype Spectrum to Immune Microenvironment Diversity in Non-small-Cell Lung Cancer Driven by Mutant Kras and Loss of Lkb1.
Specimen part
View SamplesIn order to identify the effects of Tcfeb overexpression on the kidney transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the double heterozygous KSP_CRE/KSP_Tcfeb 14 days old mice as compared to control KSP_CRE mice
Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.
Specimen part
View SamplesIn order to identify the effects of Tcfeb overexpression on the kidney transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the double heterozygous KSP_CRE/KSP_Tcfeb mice as compared to control KSP_CRE mice
Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.
Specimen part
View SamplesSUMMARY: This article presents a predictive molecular signature that marks the early onset of fibrosis in a translational nonalcoholic steatohepatitis mouse model. Overlap of genes and processes with human nonalcoholic steatohepatitis and a list of top candidate biomarkers for early fibrosis are described. BACKGROUND & AIMS: The incidence of nonalcoholic steatohepatitis (NASH) is increasing. The pathophysiological mechanisms of NASH and the sequence of events leading to hepatic fibrosis are incompletely understood. The aim of this study was to gain insight into the dynamics of key molecular processes involved in NASH and to rank early markers for hepatic fibrosis. METHODS: A time-course study in low-density lipoprotein–receptor knockout. Leiden mice on a high-fat diet was performed to identify the temporal dynamics of key processes contributing to NASH and fibrosis. An integrative systems biology approach was used to elucidate candidate markers linked to the active fibrosis process by combining transcriptomics, dynamic proteomics, and histopathology. The translational value of these findings were confirmed using human NASH data sets. RESULTS: High-fat-diet feeding resulted in obesity, hyperlipidemia, insulin resistance, and NASH with fibrosis in a time-dependent manner. Temporal dynamics of key molecular processes involved in the development of NASH were identified, including lipid metabolism, inflammation, oxidative stress, and fibrosis. A data-integrative approach enabled identification of the active fibrotic process preceding histopathologic detection using a novel molecular fibrosis signature. Human studies were used to identify overlap of genes and processes and to perform a network biology-based prioritization to rank top candidate markers representing the early manifestation of fibrosis. CONCLUSIONS: An early predictive molecular signature was identified that marked the active profibrotic process before histopathologic fibrosis becomes manifest. Early detection of the onset of NASH and fibrosis enables identification of novel blood-based biomarkers to stratify patients at risk, development of new therapeutics, and help shorten (pre)clinical experimental time frames. Keywords: Systems Biology; Metabolic Syndrome; Liver Disease; Diagnosis. Overall design: In total 9 treatment groups: 5 Control groups (chow = standard diet; t=0, 6, 12, 18, 24 weeks), 4 Treatment groups (HFD = High Fat diet; 6, 12, 18, 24 weeks).
Uncovering a Predictive Molecular Signature for the Onset of NASH-Related Fibrosis in a Translational NASH Mouse Model.
Specimen part, Subject
View SamplesWe report RNA-sequencing data of 12 platelet samples isolated from four healthy individuals and incubated with either E. coli K12, E. coli O18 or no bacteria. This dataset highlights the differential effect of bacteria on spliced platelet RNA profiles. Overall design: Blood platelets were isolated from whole blood in citrate-coated BD Vacutainers by standard centrifugation and multiple washing steps. Total RNA was extracted from the platelet pellet, subjected to cDNA synthesis and SMARTer amplification, fragmented by Covaris shearing, and prepared for sequencing using the TruSeq Nano DNA Sample Preparation Kit. Subsequently, pooled sample libraries were sequenced on the Illumina HiSeq 2500 platform. All steps were quality-controlled using Bioanalyzer 2100 with RNA 6000 Picochip, DNA 7500 and DNA High Sensitivity chips measurements. For further downstream analyses, reads were quality-controlled using Trimmomatic, mapped to the human reference genome using STAR, and intron-spanning reads were summarized using HTseq.
Impact of Escherichia coli K12 and O18:K1 on human platelets: Differential effects on platelet activation, RNAs and proteins.
Specimen part, Disease, Subject
View SamplesWe report RNA-sequencing data of 283 blood platelet samples, including 228 tumor-educated platelet (TEP) samples collected from patients with six different malignant tumors (non-small cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer and hepatobiliary carcinomas). In addition, we report RNA-sequencing data of blood platelets isolated from 55 healthy individuals. This dataset highlights the ability of TEP RNA-based ''liquid biopsies'' in patients with several types with cancer, including the ability for pan-cancer, multiclass cancer and companion diagnostics. Overall design: Blood platelets were isolated from whole blood in purple-cap BD Vacutainers containing EDTA anti-coagulant by standard centrifugation. Total RNA was extracted from the platelet pellet, subjected to cDNA synthesis and SMARTer amplification, fragmented by Covaris shearing, and prepared for sequencing using the Truseq Nano DNA Sample Preparation Kit. Subsequently, pooled sample libraries were sequenced on the Illumina Hiseq 2500 platform. All steps were quality-controlled using Bioanalyzer 2100 with RNA 6000 Picochip, DNA 7500 and DNA High Sensitivity chips measurements. For further downstream analyses, reads were quality-controlled using Trimmomatic, mapped to the human reference genome using STAR, and intron-spanning reads were summarized using HTseq. The processed data includes 285 samples (columns) and 57736 ensemble gene ids (rows). The supplementary data file (TEP_data_matrix.txt) contains the intron-spanning read counts, after data summarization by HTseq.
RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics.
No sample metadata fields
View SamplesInterleukin-6 (IL-6) is an important growth factor for estrogen receptor-alpha (ER) positive breast cancer, and elevated serum IL-6 is associated with poor prognosis. We firstly demonstrated that pSTAT3 is the primary downstream IL-6 signaling pathway in ER-positive breast cancer, using ten different breast cancer cell lines. Three-dimensional cultures of these cell lines were also used to develop a 17-gene IL-6 specific gene signature that could be used to identify IL-6 driven disease. This signature included a variety of genes involved in immune cell function and migration, cell growth and apoptosis, and the tumor microenvironment. To further validate this IL-6 signature, we obtained 36 human ER-positive breast cancer tumor samples with matched serum for gene expression profiling and determination of an IL-6 pathway activation score (PAS). Patients with high IL-6 PAS were also enriched for elevated serum IL-6 (>=10 pg/ml). We then utilized a murine MCF-7 xenograft model to determine the role of IL-6 in ER-positive breast cancer and potential anti-IL-6 therapy in vivo. When IL-6 was administered in vivo, MCF-7 cells engrafted without the need for estrogen supplementation. Subsequently, we prophylactically treated mice at MCF-7 engraftment with an anti-IL-6 antibody (siltuximab), fulvestrant or combination therapy. Siltuximab alone was able to blunt MCF-7 engraftment. Similarly, when tumors were allowed to grow to 125 mm3 before treatment, siltuximab alone demonstrated tumor regressions in 90% (9/10) of tumors. Given the established role for IL-6 in ER+ breast cancer, this data demonstrates the potential for anti-IL-6 therapeutics.
Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer.
Specimen part
View SamplesThe prevailing dogma that approximately 50% of our genome is “junk” DNA composed of transposable elements and retroviral insertions has recently been challenged. It has become evident that our genome has taken advantage of these transposable elements and uses them as a source of DNA to generate novel genes, which subsequently allow the organism to evolve. This process is termed “domestication of transposable elements” and the majority of these genes have been found to be essential for the existence of the organism. One of these developmentally essential domesticated genes: Peg10 (paternally expressed gene 10), was derived from a Ty3/gyspy LTR retrotransposon, yet lost its ability to transpose due to mutational events during its domestication. Remarkably, Peg10 has successfully maintained its Gag and Pol-like domains for millions of years. Peg10 orthologues are expressed in eutherian mammals and are essential for placentogenesis. To address the functional mechanisms of Peg10 we studied it in Trophoblast Stem Cells (TSCs). We find that the Gag of Peg10 is fully active: it promotes budding of vesicles, akin to the viral counterpart that catalyzes the budding of viruses. TSCs, deleted for Peg10, fail to differentiate into placental lineages, underscoring a critical role in lineage specification. This paper discusses our efforts to characterize the contents of Peg10 vesicles and whether such vesicles regulate lineage specification. Overall design: RNA was extracted from following genotypes - wildtype TSCs (WT_TSC), Peg10 knockout TSCs (KO_TSC), wildtype TSCs differentiated in 20% oxygen (WT_TSC_diff), Peg10 knockout TSCs differentiated in 20% oxygen (KO_TSC_diff), wildtype TSCs differentiated in 2% oxygen (WT_diff_2O2),and Peg10 knockout TSCs differentiated in 2% oxygen (KO_diff_2O2). Cells are kept in the pluripotent state by growing them on CellStart/Fgf4/Heparin. The cells were differentiated in two different conditions: 20% oxygen and 2% oxygen. The samples were collected at 10th day following differentiation. Cells are harvested and RNA is isolated using the Qiagen RNeasy kit. RT-PCR was performed for several differentiation markers to validate the success of the assay.
The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification.
Specimen part, Subject
View SamplesWe measured transcriptional changes resulting from overexpression or downregulation of the GTPase Obg.
Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance.
No sample metadata fields
View SamplesTranscriptome of S. cerevisiae in shifts between glucose and maltose media with different re-growth conditions Overall design: Cells are pregrown in maltose, then grown for different durations in glucose and then washed back to maltose
A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast.
Subject
View Samples