GPR68 is an essential flow sensor in arteriolar endothelium, and is a critical signaling component in cardiovascular pathophysiology Overall design: RNAseq of cells from mesenteric endothelium of mice plus and minus GPR68
GPR68 Senses Flow and Is Essential for Vascular Physiology.
Specimen part, Cell line, Treatment, Subject
View SamplesG-1 is an agonist to GPR30. Activation of GPR30 by G-1 inhibited prostate cancer cell growth in LNCaP xenografts regrown after catration of the host (nude mice), but not in the androgen-sensitive LNCaP xenograft grown in an intact host. Results provide insights into the molecular basis of G-1 action in castration-resistant prostate cancer.
Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer.
Specimen part
View SamplesWe analyzed transcriptional changes in 4 prostate cancer cell lines following treatment with the BET inhibitor I-BET762 using Affymetrix Human Genome U133 Plus 2.0 Arrays.
Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer.
Cell line, Time
View SamplesTo identify the molecular signature associated with abiraterone acetate (AA) response and mechanisms underlying AA resistance in castration-resistant prostate cancer patient-derived xenografts (PDXs).
Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant Prostate Cancer Patient-Derived Xenografts.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.
Cell line, Treatment
View SamplesEZH2 is frequently over-expressed in aggressive and metastatic solid tumors, including castration resistant prostate cancer (CRPC). We sought to determine EZH2-dependent gene expression programmes in prostate cancer progression, and found an intriguing functional switch of EZH2 from a repressor to an activator during CRPC development.
EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.
Cell line, Treatment
View SamplesAndrogen receptor (AR) signaling is a distinctive feature of prostate cancer (PC) and represents the major therapeutic target for the treatment of metastatic disease. Though highly effective, AR antagonism has the potential to generate tumors that bypass a functional requirement for AR activity. We show here that a phenotypic shift has occurred in metastatic PCs with the emer-gence of a double-negative AR-null neuroendocrine-null phenotype that is notable for MAPK and FGF pathway activity. To identify mechanisms capable of sustaining PC survival, we gener-ated a model system designated AR program-independent prostate cancer (APIPC) which re-sists AR-targeted therapeutics, lacks neuroendocrine features, expresses high levels of FGF8 and the ID1 oncogene, and activates MAPK signaling. Pharmacological blockade of MAPK or FGF signaling inhibited APIPC tumor growth, supporting FGF/MAPK as a therapeutic avenue for treating AR-null PC. Overall design: RNA sequencing of human prostate tumor cell lines using the Illumina TruSeq Library prep and sequenced on Illumina HiSeq 2500.
Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling.
Sex, Specimen part, Cell line, Subject
View SamplesBackground: The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Importantly, the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtained from patient samples.
Genomic pathways modulated by Twist in breast cancer.
Specimen part
View SamplesWe utilized RNA-Seq on rat Schwann (S16) cells to determine global gene expression. This information was generated as part of a larger effort to characterize cis-regulatory elements and global gene expression within Schwann cells. To achieve this, we generated RPKM values across two independent biological replicates. This dataset was also used to predict cis-regulatory element function on genes following CRISPR knockout studies. Overall design: Performed two technical replicates of RNA-Seq on two independent biological replicates of S16 cells
A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve.
No sample metadata fields
View SamplesAeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 hours after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-) transcripts. A. caviae has always been considered an opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests A. caviae colonizes murine intestinal tract and causes what has been described by others as a dysregulatory cytokine response leading to an irritable bowel-like syndrome. This response would explain why a number of diarrheal waterborne outbreaks have been attributed to A. caviae even though it lacks obvious enteropathogenic properties.
Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract.
No sample metadata fields
View Samples