This SuperSeries is composed of the SubSeries listed below.
Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.
Specimen part
View SamplesMicroarrays of gene expression in human germinal center light zone and dark zone B cells sorted according to the expression of cell surface molecules CD83 and CXCR4
Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.
Specimen part
View SamplesMicroarrays of gene expression in mouse germinal center light zone and dark zone B cells sorted according to the expression of cell surface molecules CD83 and CXCR4
Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.
Specimen part
View SamplesGerminal centers (GC) arise within B cell follicles upon antigenic challenge. In the dark zones (DZ) of GCs, B cells proliferate and hypermutate their immunoglobulin genes, and mutants with increased affinity are positively selected in the light zone (LZ) to either differentiate into plasma and memory cells, or re-enter the DZ for further refinement. However, the molecular circuits governing GC positive selection are not known. Here, we show that the GC reaction requires the biphasic regulation of c-MYC expression, involving its transient induction during early GC commitment, its repression by BCL6 in DZ B cells, and its re-induction in a subpopulation of positively selected LZ B cells destined to DZ re-entry. Accordingly, acute disruption of MYC function in vivo leads to GC collapse, indicating an essential role in GC physiology. These results have implications for our understanding of GC selection and the role of MYC deregulation in B cell lymphomas.
The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry.
Specimen part
View SamplesWe used RNA sequencing to characterize gene expression of CD4+ CD8a+ double positive (DP), Foxp3+ Treg (TR) and CD4+ single positive (SP) cells in the lamina propria (LP) and intraepithelial compartment (IEL) that had differentiante from the same clonal transnuclear (TN) precursor. Overall design: We adoptively transferred CD4+ CD8a- Foxp3-GFP- isolated from pTregTN/RKO/Foxp3-GFP mice into TCRaßKO hosts. After 6 weeks, we sorted transferred CD4+ CD8a+, Foxp3+ pTreg as well as unconverted CD4+ CD8a- Foxp3-GFP- from the small intestine LP and IEL compartments for whole transcriptome analysis by mRNA sequencing.
Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor.
Specimen part, Subject
View SamplesWe used RNA sequencing to characterize gene expression of Ly75+/+ B1-8hi and Ly75-/- B1-8hi B cells from the germinal center light zone (LZ) 12 h after forcing positive selection of the Ly75+/+ population with anti-DEC205-OVA. Overall design: We primed C57BL/6 hosts with OVA-alum i.p. and after 2 weeks we adoptively transferred a mixture of B1-8hi B cells in which 15% were Ly75+/+ CD45.1 (DECP) and 85% were Ly75-/- CD45.1/2 (DECN). We then immunized the animals with NP-OVA in the footpads and after 6 days we injected anti-DEC205-OVA. 12 h or 24 h after anti-DEC205-OVA injection we sorted B220+ CD38- CD95+ CD45.1+ CD45.2- CD83hi CXCR4lo (DECPLZ) and B220+ CD38- CD95+ CD45.1+ CD45.2+ CD83hi CXCR4lo (DECNLZ) cells for whole transcriptome analysis by mRNA sequencing.
Germinal Center Selection and Affinity Maturation Require Dynamic Regulation of mTORC1 Kinase.
Specimen part, Cell line, Subject
View SamplesWe used RNA sequencing to characterize gene expression of dendritic cells from mouse lymph node that, based on LIPSTIC labeling, underwent interaction with CD4+ T cells. Overall design: Antigen pulsed dendritic cells (DCs) were transferred into recipient mice, followed by antigen specific CD4+ T cells. Forty-eight hours after T cell transfer, endogenous dendritic cells were isolated by facs sorting from mouse lymph node and analyzed based on their in vivo LIPSTIC labeling.
Monitoring T cell-dendritic cell interactions in vivo by intercellular enzymatic labelling.
Specimen part, Cell line, Subject
View SamplesTo understand the functional relationship between brain dendritic cells (brain DCs) and other myeloid cells, we compared the gene expression profile of m/chDCs to that of bone marrow monocytes, brain microglia and classical spleen CD8+ and CD8- DCs. In order to obtain enough brain DCs for mRNA extraction, we expanded brain DCs with in vivo Flt3L treatment before purification.
Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.
Cell line
View SamplesStromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely non-coding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent anti-viral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine anti-viral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of anti-viral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate cross-talk with BrCa cells by utilizing exosomes to instigate anti-viral signaling. This expands BrCa subpopulations adept at resisting therapy and re-initiating tumor growth.
Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.
No sample metadata fields
View Samples