NOTCH1 is mutationally activated in ~15% of cases of chronic lymphocytic leukaemia (CLL), but its role in B-cell development and leukemogenesis is not known. Here, we report that the active intracellular portion of NOTCH1 (ICN1) is detectable in ~50% of peripheral blood CLL cases lacking gene mutations. We identify a ‘NOTCH1 CLL gene expression signature’ in CLL cells, and show that this signature is significantly enriched in primary CLL cases expressing ICN1, independent of NOTCH1 mutation. NOTCH1 target genes include key regulators of B-cell proliferation, survival and signal transduction physiology. In particular, we show that MYC is a direct target of NOTCH1 via B-cell specific distal regulatory elements, thus implicating this oncogene in the pathogenesis of the disease. Overall design: RNA-Seq analysis
Common nonmutational <i>NOTCH1</i> activation in chronic lymphocytic leukemia.
Specimen part, Subject
View SamplesUsing a stromal cell free system, we described the gene expression and two genome wide epigenetic profiles of a unique population of undifferentiated bone marrow cells selectively driven towards the T cell differentiation pathway
An epigenetic profile of early T-cell development from multipotent progenitors to committed T-cell descendants.
Specimen part, Treatment
View SamplesComplex regulatory mechanisms control continuous maintenance of myeloid progenitors and renewal of differentiated cells. Transcription factors play a important role in these processes. Here we report that the activation the calcineurin-NFAT signaling pathway inhibit the proliferation of myeloid granulocyte-monocyte progenitor (GMP). Myeloid progenitor subtypes possessed different susceptibilities to Ca2+ flux induction and consequently differential engagement of the calcineurin-NFAT pathway. This study show that inhibition of the calcineurin-NFAT pathway enhanced proliferation of GMPs both in vivo and in vitro. The calcineurin-NFAT signaling in GMPs is initiated through Flt3-L. The inhibition of the calcineurin-NFAT pathway altered the expression of the cell cycle regulation genes CDK4, CDK6, and CDKN1A, thus enabling faster cell cycle progression. The extensive use of NFAT inhibitors in the clinic should take into account that, in addition to the immunosuppression role in lymphoid cells, these NFAT inhibitors also affect the maintenance of the myeloid compartment.
Calcium and calcineurin-NFAT signaling regulate granulocyte-monocyte progenitor cell cycle via Flt3-L.
Specimen part
View SamplesCalcineurin/NFAT/IL-2 signaling pathway is activated in dendritic cells (DC) upon encounter of glucan, the main component of the fungal cell wall, raising the question about the role of NFAT-regulated genes in DC biology in vivo. To directly assess the function of IL-2 secreted by DC, we analyzed mice lacking of IL-2 in the DC lineage, CD4-expressing cells and with complete deletion of IL-2 in the germ line in a mouse model of pulmonary fungal infection. Here we found that specifically the loss of IL-2 in DC resulted in increased mice mortality upon the fungus Aspergillus fumigatus challenge and expansion of Th17 cells in the lung. We demonstrated that only CD103+DC were able to release IL-2 in acute phase of pulmonary Aspergillosis through the Ca2+-Calcineurin-NFAT signaling. We also found that NFAT mediates IL-23 transcription in lung DC, where IL-2 results essential in restraining the priming of a pathogenic infiltrating IL-17+Sca1+CD90+CD4+ cell with stem cell like properties. Thus, IL-2 and IL-23 secreted by DC in the lung have an antagonistic relationship on the Th17 differentiation program with IL-2 inducing T cell differentiation and IL-23 inducing a stem cell like molecular signature to Th17 cells upon Aspergillus challenge. DC-Il2-/- then confer the Th17 stemness, releasing IL-23 in response to the fungus contributing to the development of a Th17 cell effector population, particularly pathogenic in infection.
CD103(+) Dendritic Cells Control Th17 Cell Function in the Lung.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD).
Specimen part, Disease, Disease stage, Subject
View SamplesThe prime focus of the current therapeutic strategy for Multiple Myeloma (MM) is an early and deep tumour burden reduction; this characterizes and defines the complete response (CR). To date, no description of the characteristics of the plasma cells (PC) prone to achieve CR has been reported. This study aimed at the molecular characterization of PC derived from MM patients who achieved CR after bortezomib-thalidomide-dexamethasone (VTD) first line therapy.
The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD).
Specimen part, Disease, Disease stage
View SamplesMonoallelic expression of autosomal genes (MAE) is a widespread epigenetic phenomenon which is poorly understood, due in part to current limitations of genome-wide approaches for assessing it. Recently, we reported that a specific histone modification signature is strongly associated with MAE, and demonstrated that it can serve as a proxy of MAE in human lymphoblastoid cells (Nag et al. Elife. 2013 Dec 31;2:e01256). Here, we use murine cells to establish that this chromatin signature is conserved between mouse and human, and is associated with MAE in every tested cell type. Our analyses reveal extensive conservation in the identity of MAE genes between the two species. By applying MAE chromatin signature analysis to a large number of cell and tissue types, we show that the MAE state remains consistent during terminal cell differentiation and is predominant among cell-type specific genes, suggesting a link between MAE and specification of cell identity. Overall design: PolyA RNA purification and subsequent high-throughput sequencing were performed on two independent B-lymphoid clonal cell line, derived from 129S1/SvImJ x CAST/EiJ F1 mice and immortalized with Abelson murine leukemia virus, and on two independent fibroblast clonal cell lines, derived from 129S1/Sv x CAST/EiJ F1 and immortalized with SV40.
Chromatin Signature Identifies Monoallelic Gene Expression Across Mammalian Cell Types.
No sample metadata fields
View SamplesZinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200 µM ZG for 0-24 h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1ß protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons. Overall design: 5 treatment groups, 3 replicates/group, 1 control group, 3 groups treated with 100 µM zinc gluconate for increasing time (6, 12, and 24 h), 1 group treated with 200 µM zinc gluconate for 6 h
Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora.
No sample metadata fields
View SamplesCholecystokinin (CCK) is a satiety hormone produced by discrete enteroendocrine cells scattered among absorptive cells of the small intestine. CCK is released into blood following a meal; however, the mechanisms inducing hormone secretion are largely unknown. Ingested fat is the major stimulant of CCK secretion. We recently identified a novel member of the lipoprotein remnant receptor family known as immunoglobulin-like domain containing receptor 1 (ILDR1) in intestinal CCK cells and postulated that this receptor conveyed the signal for fat-stimulated CCK secretion. In the intestine, ILDR1 is expressed exclusively in CCK cells. Orogastric administration of fatty acids elevated blood levels of CCK in wild type but not ILDR1-deficient mice, although the CCK secretory response to trypsin inhibitor was retained. The uptake of fluorescently labeled lipoproteins in ILDR1-transfected CHO cells and release of CCK from isolated intestinal cells required a unique combination of fatty acid plus HDL. CCK secretion secondary to ILDR1 activation is associated with increased [Ca2+]i consistent with regulated hormone release. These findings demonstrate that ILDR1 regulates CCK release through a mechanism dependent on fatty acids and lipoproteins and that absorbed fatty acids regulate gastrointestinal hormone secretion.
Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion.
Specimen part
View SamplesB16F1 cells are a good model to study cell motility and cytoskeletal organization. In our lab, a combination of microscopy and gene silencing was used to approach the problem. Having gene expression profiles for B16F1 would facilitate and support subsequent gene silencing by RNAi as well as potentially identify new molecular players.
Role of fascin in filopodial protrusion.
No sample metadata fields
View Samples