This SuperSeries is composed of the SubSeries listed below.
A genomic approach to improve prognosis and predict therapeutic response in chronic lymphocytic leukemia.
No sample metadata fields
View SamplesChronic lymphocytic leukemia (CLL) is a heterogeneous malignancy, characterized by a variable clinical course. While clinical and laboratory parameters are increasingly being used to refine prognosis, they do not accurately predict response to commonly used therapy. We used gene expression profiling to generate and further refine prognostic and predictive markers. Genomic signatures that reflect progressive disease and responses to chemotherapy or chemo-immunotherapy were created using cancer cell lines and patient leukemia samples. We validated these signatures using independent clinical data from four separate cohorts representing a total of 301 CLL patients. A prognostic genomic signature created from patient leukemic cell gene expression data coupled with clinical parameters could statistically differentiate patients with stable or progressive disease in the training dataset. The progression signature was then validated in two independent datasets, demonstrating a capacity to accurately identify patients at risk for progressive disease. In addition, two distinct genomic signatures that predict response to chlorambucil or pentostatin, cyclophosphamide, and rituximab were also generated and were shown to accurately distinguish responding and non-responding CLL patients. Microarray analysis of CLL patients lymphocytes can be used to refine prognosis and predict response to different therapies. These results have direct implications for standard and investigational therapeutics in CLL patients.
A genomic approach to improve prognosis and predict therapeutic response in chronic lymphocytic leukemia.
No sample metadata fields
View SamplesChronic lymphocytic leukemia (CLL) is a heterogeneous malignancy, characterized by a variable clinical course. While clinical and laboratory parameters are increasingly being used to refine prognosis, they do not accurately predict response to commonly used therapy. We used gene expression profiling to generate and further refine prognostic and predictive markers. Genomic signatures that reflect progressive disease and responses to chemotherapy or chemo-immunotherapy were created using cancer cell lines and patient leukemia samples. We validated these signatures using independent clinical data from four separate cohorts representing a total of 301 CLL patients. A prognostic genomic signature created from patient leukemic cell gene expression data coupled with clinical parameters could statistically differentiate patients with stable or progressive disease in the training dataset. The progression signature was then validated in two independent datasets, demonstrating a capacity to accurately identify patients at risk for progressive disease. In addition, two distinct genomic signatures that predict response to chlorambucil or pentostatin, cyclophosphamide, and rituximab were also generated and were shown to accurately distinguish responding and non-responding CLL patients. Microarray analysis of CLL patients lymphocytes can be used to refine prognosis and predict response to different therapies. These results have direct implications for standard and investigational therapeutics in CLL patients.
A genomic approach to improve prognosis and predict therapeutic response in chronic lymphocytic leukemia.
No sample metadata fields
View SamplesWe undertook a survey of gene expression changes in primary microglial cultures with and without neurovirulent (FrCasE) and non-neurovirulent (Fr57E) virus infection to identify physiological changes that could be relevant to the induction of spongiform neurodegeneration. These gene expression analyses were performed using Affymetrix 430A mouse GeneChips (5 chips for each of the three experimental conditions, representing over 14,000 murine genes and ESTs. RNA from 5 separate microglial culture preparations were analyzed for Control (mock infected), Fr57E-, and FrCasE-infected microglia. Present/absent calls were based on MicroArray Suite 5.0 from Affymetrix. Affymetrix CEL files were analyzed using dChip software after normalization of the data between all 15 arrays. Statistical analyses were performed using ANOVA.
Gene expression profiling of microglia infected by a highly neurovirulent murine leukemia virus: implications for neuropathogenesis.
Specimen part
View SamplesMutant embryos lacking maternal and zygotic HOW exhibit defects in mesoderm development. How is an RNA binding protein that regulates the levels of mRNAs by controling RNA metabolism.
Post-transcriptional repression of the Drosophila midkine and pleiotrophin homolog miple by HOW is essential for correct mesoderm spreading.
No sample metadata fields
View SamplesMLL-fusion proteins are potent inducers of cancer in hematopoietic cells, where they are known to cause changes in global gene expression. How MLL-fusion proteins interact with the genome has not been established, so we have limited understanding of the pathway by which these proteins generate aberrant gene expression programs. Here we describe how the MLL-AF4 protein occupies the genome in human leukemia cells and its striking effects on chromatin states. We find that the MLL-AF4 fusion protein selectively occupies regions of the genome that contain developmental regulatory genes important for hematopoietic stem cell identity and self-renewal. These MLL-AF4 bound regions have grossly altered chromatin structure, with histone modifications catalyzed by Trithorax Group (TrxG) proteins and Dot1 extending across unusually large domains. This indicates that a key feature of MLL-associated leukemogenesis is aberrant targeting of chromatin modifiers to regions of the genome controlling hematopoietic development. Our results define the direct targets of the MLL-fusion protein, reveal the global role of epigenetic misregulation in leukemia, and identify new targets for therapeutic intervention in human cancer.
Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia.
No sample metadata fields
View SamplesRBP2 is downstream of pRB pathway
Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation.
No sample metadata fields
View SamplesWe present a microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. Results are compared with previous genomic studies of HIV-1 effect in human astrocytes and human and macaque brains.
Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders.
Specimen part, Treatment
View SamplesBy using high-density DNA microarrays, we analyzed the gene-expression profile in a panel of germ cell tumour cell lines
Differentiation-Dependent Regulation of Human Endogenous Retrovirus K Sequences and Neighboring Genes in Germ Cell Tumor Cells.
Specimen part, Cell line
View SamplesAttention deficit hyperactivity disorder (ADHD) is a common psychiatric condition of children with a prevalence of 5-10% worldwide. Up to 30% of adults with a history of childhood ADHD maintain symptoms in later life; these adult ADHD patients are severely impaired in social and professional life due to persistence of ADHD core symptoms like impulsivity, attention deficit and hyperactivity as well as frequently observed co-morbidities like alcohol and drug abuse, major depression, bipolar and personality disorders.
A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients.
Specimen part, Treatment
View Samples