By using high-density DNA microarrays, we analyzed the gene-expression profile in a panel of germ cell tumour cell lines
Differentiation-Dependent Regulation of Human Endogenous Retrovirus K Sequences and Neighboring Genes in Germ Cell Tumor Cells.
Specimen part, Cell line
View SamplesMycobacteria infect macrophages that aggregate with additional macrophages and lymphocytes to form granulomas. We have used a functional genomics approach to identify immune response genes expressed during granuloma formation in Mycobacterium marinum-infected transparent zebrafish larvae where individual infection steps can be viewed in real time. We assessed RNA expression profiles from zebrafish larvae that were either infected with Mycobacterium marinum, mock-infected, or uninfected. Zebrafish infections were performed at 1 day post-fertilization (dpf), and samples were derived from pools of 6dpf zebrafish larvae.
Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium.
No sample metadata fields
View SamplesBy using high-density DNA microarrays, we analyzed the gene-expression profile of Hodgkin's lymphoma cell line L-428 after knock-down of DUSP5 (dual specificity phosphatase 5)
Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in tumor cells.
Specimen part, Cell line
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesBy using high-density DNA microarrays, we analyzed the gene-expression profile of Hodgkin's lymphoma cell lines.
Gene expression profiles of Hodgkin's lymphoma cell lines with different sensitivity to cytotoxic drugs.
Cell line
View Samples