We used laser capture microdissection to isolate different zones of the articular cartilage from proximal tibiae of 1-week old mice, and used microarray to analyze global gene expression. Bioinformatic analysis corroborated previously known signaling pathways, such as Wnt and Bmp signaling, and implicated novel pathways, such as ephrin and integrin signaling, for spatially associated articular chondrocyte differentiation and proliferation. In addition, comparison of the spatial regulation of articular and growth plate cartilage revealed unexpected similarities between the superficial zone of the articular cartilage and the hypertrophic zone of the growth plate.
Gene expression profiling reveals similarities between the spatial architectures of postnatal articular and growth plate cartilage.
Age, Specimen part
View SamplesArticular and growth plate cartilage have comparable structures consisting of three distinct layers of chondrocytes, suggesting similar differentiation programs and therefore similar gene expression profiles. To address this hypothesis and to explore transcriptional changes that occur during the onset of articular and growth plate cartilage divergence, we used microdissection of 10-day-old rat proximal tibial epiphyses, microarray analysis, and bioinformatics to compare gene expression profiles in individual layers of articular and growth plate cartilage.
Gene expression profiling reveals similarities between the spatial architectures of postnatal articular and growth plate cartilage.
Age, Specimen part
View SamplesWe used microarrays to detail the global gene expression changes following RNAi knock-down of dTip60 in Drosophila SL2 cells
Widespread regulation of gene expression in the Drosophila genome by the histone acetyltransferase dTip60.
Cell line
View SamplesIn order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.
Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.
Sex, Specimen part
View SamplesmRNA expression data were collected from patients with brain tumor to improve diagnostic of gliomas on molecular level.
Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.
No sample metadata fields
View SamplesFour male SHR/Ola, BN and SHR-18 rats were fed a normal diet and sacrificed at 9 weeks of age. Four male SHR/Ola and SHR-18 rats at 8 weeks of age were fed 1% NaCl for one week and then sacrificed. Kidneys were removed and frozen in liquid nitrogen for all 20 animals. Total RNA was isolated, labelled cRNA was generated and hybridised to Affymetrix Rat RG-U34ABC arrays.
Dissection of chromosome 18 blood pressure and salt-sensitivity quantitative trait loci in the spontaneously hypertensive rat.
Sex, Age, Specimen part
View SamplesIn response to limited nitrogen and abundant carbon sources, diploid Saccharomyces cerevisiae strains undergo a filamentous transition in cell growth as part of pseudohyphal differentiation. Use of the disaccharide maltose as the principal carbon source, in contrast to the preferred nutrient monosaccharide glucose, has been shown to induce a hyper-filamentous growth phenotype in a strain deficient for GPA2 which codes for a Galpha protein component that interacts with the glucose-sensing receptor Gpr1p to regulate filamentous growth. In this report, we compare the global transcript and proteomic profiles of wild-type and Gpa2p deficient diploid yeast strains grown on both rich and nitrogen starved maltose media. We find that deletion of GPA2 results in significantly different transcript and protein profiles when switching from rich to nitrogen starvation media. The results are discussed with a focus on the genes associated with carbon utilization, or regulation thereof, and a model for the contribution of carbon sensing/metabolism-based signal transduction to pseudohyphal differentiation is proposed.
Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation.
No sample metadata fields
View SamplesThe development of the human brain is a complex and precisely regulated process that unfolds over a protracted period of time. Human-specific features of this process, especially the ways in which highly complex neural circuits of the cerebral cortex form, are likely to be important factors in the evolution of human specializations. However, in addition to giving us remarkable cognitive and motor abilities, the formation of intricate neural circuits may have also increased our susceptibility to psychiatric and neurodegenerative disorders. Furthermore, substantial evidence suggests that the symptoms and progression of many brain disorders are dramatically influenced by genetic and developmental processes that define regional cell phenotypes and connectivity. Sex differences also play an important role in brain development and function and are a risk factor for several brain disorders, such as autism spectrum disorders (ASD) and depression. Thus understanding the spatiotemporal dynamics and functional organization of the brain transcriptome is essential to teasing out the keys to human neurodevelopment, sexual dimorphism, and evolution as well as our increased susceptibility to certain brain disorders. Most transcriptome studies of the developing brain have been restricted to rodents, and those performed in humans and nonhuman primates have included relatively small sample sizes and predominantly focused on few regions or developmental time points. Because many prominent features of human brain development significantly diverge from those of well-characterized model organisms, the translation of knowledge across species is difficult, and it is likely that many underlying genetic processes have gone undetected. In this study, we have taken a genome-wide approach to analyze the human transcriptome at single-exon resolution with ~1.4 million exon-level probe sets in 16 brain regions from donors representing both sexes and multiple ethnicities, across pre and postnatal development, including adolescence, and adulthood. We also generated genome-wide genotype data for 2.5 million single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for each specimen. Our analyses of the data revealed several features of the human brain transcriptome: spatiotemporal expression dynamics of individual and functionally related groups of genes, differential exon usage, sex-specific expression patterns and exon usage, and organization of the transcriptome into functional modules. We also profiled developmental trajectories of genes important for neurobiological themes and genes associated with ASD and schizophrenia. Finally, we present associations between specific SNPs and gene expression levels in different brain regions across development. The dataset presented here provides research opportunities and a wealth of information not previously available to the scientific community.
Spatio-temporal transcriptome of the human brain.
Sex, Age
View SamplesSequencing data related to our manuscript "Systematic identification of general and context-specific regulators of phagocytosis using magnetic genome-wide CRISPR screens" Overall design: Two groups of U937 cells were sequenced before and after PMA differentiation. One group carried Streptococcus pyogenes Cas9 and a safe-harbor control sgRNA, and the second group was a clonally expanded U937 line expressing GFP. Each group was separated into eight separate wells at d0, and half of the wells were treated with 50 nM PMA. At day 3, undifferentiated cells were split to prevent overcrowding, and differentiated cells were trypsinized and replated. Cells were allowed to recover for 2 additional days before cells were lysed for RNA harvest and sequencing.
Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens.
Cell line, Subject
View SamplesTo attain deeper insight into metabolic alterations in Trpm6 gene deficient mice we used microarrays for profiling of hepatic transcripts of Trpm6 ko and control mice.
Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival.
Sex, Age
View Samples