Hyper IgE Recurrent Infection Syndrome (HIES or Jobs syndrome), is a rare disorder of immunity and connective tissue, typically manifest with boils, cyst-forming pneumonias, and extremely elevated serum IgE as well as retained primary dentition and bone abnormalities. Inheritance can be autosomal dominant.
STAT3 mutations in the hyper-IgE syndrome.
No sample metadata fields
View SamplesDomestic chicken has been intensively studied because of its role as an efficient source of lean meat. However, commercial broilers resulting from genetic selection for rapid growth demonstrate detrimental traits, such as excess deposition of abdominal adipose tissue, metabolic disorders, and reduced reproduction. Therefore fast-growing broilers represent obese chickens compared to slow-growing egg layers (e.g, Leghorn) or wild strain of meat-type chickens (e.g., Fayoumi). Fayoumi chickens, originating from Egypt, represent a harder stain of chickens, which are more resistant to diseases. Leghorn chickens are the original breed of commercial U.S layers. Both lines were maintained highly inbred by Iowa State University poultry geneticists with an inbreeding coefficient higher than 0.95. Both Fayoumi and Leghorn demonstrated lean phenotype compared to broilers, and these three lines of chickens are genetically distant from each other.
Molecular and metabolic profiles suggest that increased lipid catabolism in adipose tissue contributes to leanness in domestic chickens.
Sex, Age, Specimen part
View SamplesThe immune system plays a pivotal role in susceptibility to and progression of a variety of diseases. Due to its strong genetic basis, heritable differences in immune function may contribute to differential disease susceptibility between individuals. Genetic reference populations, such as the BXD (C57BL/6J X DBA/2J) panel of recombinant inbred (RI) mouse strains, provide a unique model through which to integrate baseline phenotypes in healthy individuals with heritable risk for disease because of the ability to combine data collected from these populations across multiple studies and time. We performed basic immunophenotyping (e.g. percentage of circulating B and T lymphocytes and CD4+ and CD8+ T cell subpopulations) in peripheral blood of healthy mice from 41 BXD RI strains to define the phenotypic variation in this model system and to characterize the genetic architecture that unlerlies these traits. Significant QTL models that explained the majority (50-77%) of phenotypic variance were derived for each trait and for the T:B cell and CD4+:CD8+ ratios. Combining QTL mapping with spleen gene expression data uncovered two quantitative trait transcripts (QTTs), Ptprk and Acp1, that which are candidates for heritable differences in the relative abundance of helper and cytotoxic T cells. These data will be valuable in extracting genetic correlates of the immune system in the BXD panel. In addition, they will be a useful resource in prospective, phenotype-driven model selection to test hypotheses about differential disease or environmental susceptibility between individuals with baseline differences in the composition of the immune system.
Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in BXD recombinant inbred mice.
Sex, Specimen part
View SamplesDomestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens.
Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting.
Specimen part
View SamplesThe adoptive transfer of chimeric antigen receptor- (CAR) modified T cells is revolutionizing the treatment of B cell malignancies and has the potential to be applied to other diseases. CARs redirect T cell specificity by linking an antigen recognition domain to T cell signaling modules comprised of CD3z to provide signal 1, and CD28 or 4-1BB to provide costimulation. CD28/CD3z and 4-1BB/CD3z CARs confer differences in effector function and cell fate that affect clinical efficacy and toxicity. These differences may result from activation of divergent transcriptional programs. To gain this insight, we analyzed changes in gene expression in stimulated and resting CD28/CD3z or 4-1BB/CD3z CAR T cells. CD28/CD3z CAR stimulation initiated more marked early transcriptional changes with greater fold increases in the expression of effector molecules including GZMB, IFNG, IL2, TNF, and IL6. Direct comparison of CD28/CD3z and 4-1BB/CD3z samples stimulated for 6 hours identified 1,673 differentially expressed genes. Of these, the memory T cell-associated genes KLF2, IL7R, and FAM65B were expressed at lower levels in CD28/CD3z CAR T cells. KLF2 and IL7R are FOXO transcription factor family targets and we found that FOXO4 expression was similarly reduced in CD28/CD3z CAR T cells. CD28/CD3z CAR stimulation induces an effector T cell-like transcriptional profile that may underlie the decreased persistence and increased risks of toxicities observed with CD28/CD3z CAR T cells in early clinical trials. Overall design: Purified CD28/CD3z and 4-1BB/CD3z CAR T cells were prepared from healthy donors and stimulated by incubation with anti-CAR beads, or left unstimulated by incubation with control beads. Total RNA was harvested 6 or 24 hours after treatment. Three biological replicates for each treatment condition were prepared, yielding 24 total samples for analysis. A42 and A44 denote 4-1BB/CD3z CARs, A43 and A45 denote CD28/CD3z CARs.
Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function.
Subject, Time
View SamplesSETD5, a gene linked to intellectual disability (ID) and autism spectrum disorder (ASD), is a member of the SET-domain family and encodes a putative histone methyltransferase (HMT). To date, the mechanism by which SETD5 haploinsufficiency causes ASD/ID remains an unanswered question. Setd5 is the highly conserved mouse homolog, and although the Setd5 null mouse is embryonic lethal, the heterozygote is viable. Morphological tracing and multi electrode array was used on cultured cortical neurons. MRI was conducted of adult mouse brains and immunohistochemistry of juvenile mouse brains. RNA-Seq was used to investigate gene expression in the developing cortex. Behavioral assays were conducted on adult mice. Setd5+/- cortical neurons displayed significantly reduced synaptic density and neuritic outgrowth in vitro, with corresponding decreases in network activity and synchrony by electrophysiology. A specific subpopulation of fetal Setd5+/- cortical neurons showed altered gene expression of neurodevelopment-related genes. Setd5+/- animals manifested several autism-like behaviors, including hyperactivity, cognitive deficit, and altered social interactions. Anatomical differences were observed in Setd5+/- adult brains, accompanied by a deficit of deep-layer cortical neurons in the developing brain. Our data converge on a picture of abnormal neurodevelopment driven by Setd5 haploinsufficiency, consistent with a highly penetrant risk factor. Overall design: Single cell RNA-Seq of CD24+ CD45- neuronal cells isolated from E18.5 WT or SetD5 +/- mouse fetuses.
Setd5 haploinsufficiency alters neuronal network connectivity and leads to autistic-like behaviors in mice.
Specimen part, Cell line, Subject
View SamplesHuman induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells differentiate into cells of the endothelial lineage, but derivation of cells with human umbilical cord blood endothelial colony forming cell (ECFC)-like properties has not been reported. Here we describe a novel serum- and stromal cell-free ECFC differentiation protocol for the derivation of clinically relevant numbers of ECFCs (> 108) from hiPS and hES cells. We identified NRP-1+CD31+ selected cells that displayed a stable endothelial phenotype exhibiting high clonal proliferative potential, extensive replicative capacity, formation of human vessels that inosculated with host vasculature upon transplantation, but lacking in teratoma formation in vivo. We also identified NRP-1-VEGF165-KDR-mediated activation of KDR as a critical mechanism for the emergence and derivation of ECFCs from hiPS and hES cells. This protocol advances the field by generating highly replicative but stable endothelial cells for use as a potential cell therapy for human clinical disorders. Overall design: Transcriptome sequencing of undifferentiated day 0 hiPS cells, Day 3 differentiated hiPS-derived mesoderm proginator cells, Day 12 hiPS-derived NRP-1+CD31+ cells, Day 12 H9-hES-derived NRP-1+CD31+ cells and cord blood-derived Endothelial colony forming cells.
Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells.
Specimen part, Subject
View Samples