Silymarin (SM) is a popular botanical medicine with purported liver protective effects. SM displays multiple effects in animal models and in cell culture including prevention of liver disease, reduction of inflammation, oxidative stress, and proliferation. Despite a plethora of data indicating that SM impinges on multiple cellular signaling pathways important in inflammation and disease, no unifying mechanisms have been forwarded. To define how SM elicits so many biological effects, the current study presents the first comprehensive transcriptional profiling study of human hepatoma cells treated with SM. The intention of the study was to focus on the early transcriptional events that are associated with SM-induced inhibition of proliferation and inflammation. Collectively, the data demonstrate that SM causes a rapid transcriptional reprogramming of cells that initially manifests as energy stress and slowing of cellular metabolism, leading to inhibition of cell growth and inflammation.
Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling.
Specimen part, Cell line, Treatment, Time
View SamplesGlobal analysis of gene expression in 10 day old brm-101 and syd-2 mutant seedlings compared to wild type Landsberg erecta seedlings.
Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED.
Age
View SamplesWhereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic repression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are consistently marked by histone H3 K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET-domain protein G9a. We find that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression is unchanged at the domains analysed, in spite of a global loss of H3-K9 di-methylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is lost in the absence of G9, and this correlates with a loss of H3K9me2 and H3K9me3. These findings provide the first in vivo evidence for the involvement of a SET domain protein in imprinting and highlight the importance of histone lysine methylation rather than DNA methylation in the maintenance of imprinting in the trophoblast lineage.
G9a histone methyltransferase contributes to imprinting in the mouse placenta.
Age, Specimen part
View SamplesWe measured the genome-wide expression changes induced by 29 compounds targeting HDACs, DNMTs, histone lysine methyltransferases (HKMTs), and protein arginine methyltransferases (PRMTs) in pancreatic - and -cell lines.
Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesExcessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesExcessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Cell line, Treatment
View SamplesWe compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Treatment
View SamplesGlobal analysis of gene expression in 9 day old LEAFY-GR, 35S::LFY or Landsberg erecta seedlings treated with the steroid dexamethasone and/or the protein synthesis inhibitor cycloheximide.
Genomic identification of direct target genes of LEAFY.
No sample metadata fields
View Samples