refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 62 results
Sort by

Filters

Technology

Platform

accession-icon SRP198408
RNA sequencing in human GBM stem cells with Myc knockdown and PARP inhibitor treatment
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

This experiment is to examine the effect of PARP inhibitor and Myc shRNA knockdown on transcriptome profiles in MYC-amplified human GBM stem cells MGG4. Overall design: There are totally 4 samples. GBM cell MGG4 expressing scramble shRNA or shRNA targeting Myc were grown in doxycycline (Dox, 1 mg/ml) for 6 days, treated with olaparib (Ola, 10 microM) or DMSO for 24h, and harvested for RNA extraction, followed by RNA sequencing

Publication Title

Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE26420
Expression data from HEK293 cells with or without MIBP1 overexpression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The transcription factor c-MYC intron binding protein 1 (MIBP1) binds to various genomic regulatory regions, including intron 1 of c-MYC. This factor is highly expressed in post-mitotic neurons in the fetal brain and may be involved in various biological steps, such as neurological and immunological processes. In this study, we globally characterized the transcriptional targets of MIBP1 and proteins that interact with MIBP1. Microarray hybridization followed by Gene Set Enrichment Analysis revealed that genes involved in the pathways downstream of MYC, NF-B, and TGF- were downregulated when HEK293 cells stably overexpressed MIBP1. In silico transcription factor binding site analysis of the promoter regions of these downregulated genes showed that the NF-B binding site was the most overrepresented. The upregulation of genes known to be in the NF-B pathway after the knockdown of endogenous MIBP1 in HT1080 cells supports the view that MIBP1 is a downregulator of the NF-B pathway. We also confirmed the binding of the MIBP1 to the NF-B site. By immunoprecipitation and mass spectrometry, we detected O-linked -N-acetylglucosamine (O-GlcNAc) transferase (OGT) as a prominent binding partner of MIBP1. Analyses using deletion mutants revealed that a 154-amino acid region of MIBP1 was necessary for its OGT binding and O-GlcNAcylation. A luciferase reporter assay showed that NF-B-responsive expression was repressed by MIBP1, and stronger repression by MIBP1 lacking the 154-amino acid region was observed. Our results indicate that the primary effect of MIBP1 expression is the downregulation of the NF-B pathway, and that this effect is attenuated by O-GlcNAc signaling.

Publication Title

Genome-wide repression of NF-κB target genes by transcription factor MIBP1 and its modulation by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE30309
Gene expression changes in response to the overexpression of the Arabidopsis RKD4 gene
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Arabidopsis RWP-RK protein RKD4 is expressed specifically in early embryogenesis and triggers embryonic cell division sequences. We used Affymetrix ATH1 microarrays to analyze the pattern of gene expression changes in response to induced ectopic expression of RKD4 in post-embryonic organs.

Publication Title

The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE39152
Molecular signature of brain resident memory CD8+ T cells
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Tissue resident memory (Trm) represent a newly described memory T cell population. We have previously characterized a population of Trm that persists within the brain following acute virus infection. Although capable of providing marked protection against a subsequent local challenge, brain Trm do not undergo recall expansion following dissociation from the tissue. Furthermore, these Trm do not depend on the same survival factors as the circulating memory T cell pool as assessed either in vivo or in vitro. To gain greater insight into this population of cells we compared the gene-expression profiles of Trm isolated from the brain to circulating memory T cells isolated from the spleen following an acute virus infection. Trm displayed altered expression of genes involved in chemotaxis, expressed a distinct set of transcription factors and overexpressed several inhibitory receptors. Cumulatively, these data indicates that Trm are a distinct memory T cell population disconnected from the circulating memory T cell pool and displaying a unique molecular signature which likely results in optimal survival and function within their local environment.

Publication Title

The molecular signature of tissue resident memory CD8 T cells isolated from the brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84165
Derivation of ground-state female ESCs maintaining gamete-derived DNA methylation
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE82313
Derivation of ground-state female ESCs maintaining gamete-derived DNA methylation [gene expression]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Preimplantation embryos undergo a transient wave of genome-wide demethylation with the exception of imprinted genes that are critical for fetal development. Here we show that the derivation of female mouse embryonic stem cells (ESCs) in the presence of inhibitors of MEK1/2 and Gsk3 (2i-ESCs), known as 2i or ground-state culture conditions, results in a widespread loss of DNA methylation including a massive erasure of genomic imprints. In this study, we analyzed global gene expression profile and global DNA methylation status in 2i-ESCs and 2i-ESCs derived differentiated cells. S-ESCs are ESCs established under serum-containing medium. 2i_S_ESCs are ESCs established in 2i-containing medium, followed by maintenance in serum-containing medium.

Publication Title

Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107069
Expression data from superficial zone cells of articular cartilage (SFZ) cells treated with retinoic acid
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify downstream transcription factors induced by retinoic acid, we stimulated SFZ cells with 10 M retinoic acid for 24 hours and performed microarray analysis.

Publication Title

Sox4 is involved in osteoarthritic cartilage deterioration through induction of ADAMTS4 and ADAMTS5.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP021535
Minotaur is critical for primary piRNA biogenesis [RNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Piwi proteins and their associated small RNAs are essential for fertility in animals. This is due, in part, to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and as such form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous-sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. Overall design: Examination of transcriptom profile in heterozygous and homozygous CG5508 mutant ovaries

Publication Title

Minotaur is critical for primary piRNA biogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP021534
Minotaur is critical for primary piRNA biogenesis [smallRNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Piwi proteins and their associated small RNAs are essential for fertility in animals. This is due, in part, to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and as such form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous-sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. Overall design: Examination of small RNA profile in heterozygous and homozygous CG5508 mutant ovaries

Publication Title

Minotaur is critical for primary piRNA biogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP196721
Identification of SERPINE1 as a Regulator of Glioblastoma Cell Dispersal via Analyzing Dynamic Transcriptome of Dispersing Cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

With a model mimicking GBM tumor cell dispersal, transcriptome changes between core (immotile) and dispersive (motile) cells were analyzed. Many genes are differentially expressed between these populations. This study focused on the genes that are significantly upregulated in dispersive cells. Besides gene sets related with the cell cycle and cell survival, epithelial to mesenchymal transition gene set is upregulated in dispersive cells. In this gene set, this study identified SERPINE1 gene as an important regulator of GBM cell dispersal. Overall design: Examination of core and dispersive populations' transcriptome during U373 cell spheroid dispersal. 2 sets of samples were prepared each for core and dispersive cells.

Publication Title

Identification of <i>SERPINE1</i> as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact