In this study we tested the ability to predict organ injury from transcriptomics data in Sprague-Dawley rats at early time points after exposure to thioacetmide (8 and 24 hours). We selected thioacetamide, an organosulfur compound extensively used in animal studies as a hepatotoxin and carcinogen for its ability to cause acute liver damage. Overall design: We treated 30 Sprague-Dawley rats with saline solution (control), 25 mg/kg (low dose), and 100 mg/kg (high dose) to produce different degrees of injury. RNA samples for gene expression analysis were collected from the liver, kidney, and heart at 8 and 24 hours. Number of repicates were five.
Concordance between Thioacetamide-Induced Liver Injury in Rat and Human In Vitro Gene Expression Data.
Specimen part, Cell line, Subject
View SamplesPurpose: The purpose of this study is to measure the changes in liver transcriptome in response to short-term fasting between 7 and 13 h where the rats were dosed with 2 ml/kg of saline vehicle at 0 h Methods: Total RNA was isolated from the liver, using TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA) and the direct-zol RNA Mini Prep kit (Zymo Research, Irvine, CA). The isolated RNA samples were then submitted to the Vanderbilt University Medical Center VANTAGE Core (Nashville, TN) for RNA quality determination and sequencing. Total RNA quality was assessed using a 2100 Bioanalyzer (Agilent, Santa Clara, CA). At least 200 ng of DNase-treated total RNA with high RNA integrity was used to generate poly-A-enriched mRNA libraries, using KAPA Stranded mRNA sample kits with indexed adaptors (Roche, Indianapolis, IN). Library quality was assessed using the 2100 Bioanalyzer (Agilent), and libraries were quantitated using KAPA library Quantification kits (Roche). Pooled libraries were subjected to 75-bp paired-end sequencing according to the manufacturer's protocol (Illumina HiSeq3000, San Diego, CA). Results: No genes were were found to be differentially expressed with a false discovery rate less than 0.1 Conclusions: There were no significant changes in liver gene expression between 7 and 13 h of fasting Overall design: Liver mRNA profiles of 7- and 13-h fasted Sprague-Dawley rats were generated by RNA-seq.
Network Modeling of Liver Metabolism to Predict Plasma Metabolite Changes During Short-Term Fasting in the Laboratory Rat.
Specimen part, Cell line, Treatment, Subject
View SamplesPurpose: The purpose of this study is to measure the changes in liver transcriptome in response to short-term fasting between 5 and 10 h where the rats were dosed with 6 ml/kg of polyethylene glycol vehicle at 0 h Methods: Total RNA was isolated from the liver, using TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA) and the direct-zol RNA Mini Prep kit (Zymo Research, Irvine, CA). The isolated RNA samples were then submitted to the Vanderbilt University Medical Center VANTAGE Core (Nashville, TN) for RNA quality determination and sequencing. Total RNA quality was assessed using a 2100 Bioanalyzer (Agilent, Santa Clara, CA). At least 200 ng of DNase-treated total RNA with high RNA integrity was used to generate poly-A-enriched mRNA libraries, using KAPA Stranded mRNA sample kits with indexed adaptors (Roche, Indianapolis, IN). Library quality was assessed using the 2100 Bioanalyzer (Agilent), and libraries were quantitated using KAPA library Quantification kits (Roche). Pooled libraries were subjected to 75-bp single-end sequencing according to the manufacturer's protocol (Illumina HiSeq3000, San Diego, CA). Results: No genes were were found to be differentially expressed with a false discovery rate less than 0.1 Conclusions: There were no significant changes in liver gene expression between 5 and 10 h of fasting Overall design: Liver mRNA profiles of 5- and 10-h fasted Sprague-Dawley rats were generated by RNA-seq.
Network Modeling of Liver Metabolism to Predict Plasma Metabolite Changes During Short-Term Fasting in the Laboratory Rat.
Specimen part, Cell line, Subject
View SamplesPredicting liver injury after exposure to toxic industrial chemicals is complicated by the large number of potential environmental contaminants, mixtures, and exposure dose and route scenarios. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be fibrogenic by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague-Dawley rats dosed with varying concentrations of three fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4-methylenedianiline) and two non-fibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. Transcriptomics data matched the predictions made using the DrugMatrix data with greater than 90% accuracy. Microarray data were verified using a 67-plex panel Bioplex assay, confirming that the 67-plex panel constituted a biomolecular signature of hepatic fibrosis (Figure). Necrosis and inflammatory infiltration were comorbid with fibrosis. Interaction analysis identified 24 genes specific for the fibrosis phenotype. The protein product of the gene most strongly correlated with the fibrosis phenotype (Pcolce) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (p<0.05). PCOLCE is a novel biomarker candidate of fibrotic injury. These results support the development of gene panels for liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology.
Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.
Sex, Specimen part
View SamplesEnteric glial cells (EGCs) are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammator microenvironment. In this study we isolated GFAP-positive myenteric glia from FVB/hGFAP-eGFP transgenic postnatal day 7 mice. Following cell sorting for the eGFP reporter, GFAP-positive EGCs were cultured for 3 weeks to generate neurosphere-like bodies. This cell culture was stimulated with LPS for 48 h and cells were employed for gene expression profiling. LPS-stimulated cell cultures were compared to untreated control cell cultures. Enriched GFAP+ EGC cultures secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Further, in vitro cultures were compared to GFAP-eGFP-positive cells directly analyzed after cell sorting of small intestinal LMMP digests (in vivo) to assess alterations in transcriptomic profiles due to the in vitro culture.
Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo.
Specimen part
View SamplesTo search for rapid changes in gene expression following BCR activation, we performed DNA microarray analysis of activated splenic B cells with and without anti-IgM treatment for 3 hour. The expression of a remarkably large set of genes differed significantly.
Initiation of antigen receptor-dependent differentiation into plasma cells by calmodulin inhibition of E2A.
Age, Specimen part
View SamplesPhloem-feeding pests cause extensive crop damage throughout the world yet little is understood about how plants perceive and defend themselves from these threats. The silverleaf whitefly (SLWF; Bemisia tabaci type B) is a good model for studying phloem-feeding insect-plant interactions as SLWF nymphs cause little wounding and have a long, continuous interaction with the plant. Using the Arabidopsis ATH1 GeneChip, the global responses to Silverleaf Whitefly 2nd instar feeding were examined.
Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids.
Age
View SamplesTranscriptome analysis was performed to determine what gene expression changes occur in response to treatment of the plant-derived compound harmine and to determine its effect on protein kinase C agonist reactivation of latent HIV.
Harmine enhances the activity of the HIV-1 latency-reversing agents ingenol A and SAHA.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated analysis of global mRNA and protein expression data in HEK293 cells overexpressing PRL-1.
Cell line
View SamplesIdiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix proteins deposition. Epstein - Barr virus (EBV) has previously been localised to alveolar epithelial cells of IPF patients. In this study we utilised a microarray based differential gene expression analysis strategy to identify potential molecular drivers of EBV associated lung fibrosis. We employed an alveolar epithelial cell line infected with EBV (A-Akata). Lytic phase infection induced in the A-Akata cells by TPA/BA treatment resulted in increase of TGFbeta1 and TIEG1 mRNA expression. Treatment of the A-Akata cells with ganciclovir,
Alveolar epithelial cell injury with Epstein-Barr virus upregulates TGFbeta1 expression.
No sample metadata fields
View Samples