This SuperSeries is composed of the SubSeries listed below.
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Specimen part, Treatment
View SamplesThese data provide a basis for exploration of gene expression differences between physiologically diverse Spring annual accessions of Arabidopsis thaliana.
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Specimen part, Treatment
View SamplesThese data provide a basis for exploration of gene expression differences between physiologically diverse accessions of Arabidopsis thaliana.
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Specimen part, Treatment
View SamplesThese data provide a basis for the detection of sequence based polymorphisms between 10 Spring annual accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies.
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Specimen part
View SamplesThese data provide a basis for exploration of gene expression differences between physiologically extreme accessions of Arabidopsis thaliana.
Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.
Specimen part, Treatment
View SamplesThese data provide a basis for the detection of sequence based polymorphisms between 10 Spring annual accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies.
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Specimen part
View SamplesThese data provide a basis for the detection of sequence based polymorphisms between the Col-1, Tsu-1, and Kas-1 accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies.
Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.
Specimen part
View SamplesCumulus-oocyte complexes were isolated a seperate time-points to generate temporal complexes. Targets from two biological replicates at each time point (0h, 8h, 16h post-hCG treatment) were generated and the expression profiles were determined using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Comparisons between the sample groups allow the identification of genes with temporal expression patterns.
Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process?
No sample metadata fields
View SamplesBipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls.
Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes.
Sex, Age, Disease
View SamplesBipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.
Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes.
Sex, Age, Disease
View Samples