refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 40 results
Sort by

Filters

Technology

Platform

accession-icon SRP159004
Expression changes in mouse oligodendrocytes after deletion of the Ep400 chromatin remodeler
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To address the role of INO80/SWR-type remodeling complexes, we deleted Ep400 at defined times of mouse oligodendrocyte development. Whereas oligodendrocyte precursors are specified and develop normally without Ep400, terminal differentiation is dramatically impaired resulting in hypomyelination. RNA-Seq studies were performed on cultured and FACS sorted control and Ep400-deficient mouse oligodendrocytes to analyze changes in gene expression. These revealed that genes associated with the myelination program and with response to DNA damage are altered in Ep400-deficient oligodendrocytes. Overall design: OPC mRNA profiles of 6-day old control (ctrl) and Ep400 cko mice were generated using the Illumina HiSeq 2500 platform.

Publication Title

Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE51288
Expression data from human CD4 or CD8 T-cells isolated from PBMC cultured at a low cell density (LDC) or high cell density (HDC)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Research in human immunobiology is mainly based on working with peripheral blood mononuclear cells (PBMC). However, recent investigations have shown that circulating CD4+ T cells are less sensitive to several T-cell activating monoclonal antibodies (mAb) and to recall antigens as compared to tissue-resident cells or cells that were in-vitro cultured at a high cell density of 10^7 cells/mL for 2 days at 37C and 5% CO2 (RESTORE protocol, Rmer et al., Blood 2011, PMID: 21931118). To explain the increase in sensitivity of CD4+ T-cells to mAbs and recall antigens on a molecular level, we performed microarray hybridizations of total RNA from T-cells isolated from PBMC that were cultured at a low or high cell density. To avoid the detection of genes that are up- or down-regulated by the culture process itself, we used low cell density cultured PBMC, instead of freshly prepared PBMC.

Publication Title

High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59417
Neural Stem/Progenitor Cell Properties of Glial Cells in the Adult Auditory Nerve
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE59415
Neural Stem/Progenitor Cell Properties of Glial Cells in the Adult Auditory Nerve [development]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Spiral ganglion neurons (SGNs) and the associated components of the auditory nerve are primary carriers of auditory information from hair cells to the brain. Loss of SGNs occurs with many pathological conditions, resulting in permanent sensorineural hearing loss. Neural stem/progenitors (NSPs) have been well-characterized in several locations of adult brain and retina. However, it is unclear whether NSPs are present in the adult auditory nerve. Here we examined the self-renewal potential of the adult auditory nerve using ouabain application as a well-established mouse model of acute SGN injury. The observed increase in cell proliferation, alteration in enchromatin/heterochromatin ratio and down-regulation of histone deacetylase expression in glial cells suggest that the quiescent glial cells convert to an activated state after SGN degeneration. This was further confirmed by global gene expression analysis of injured auditory nerves, which showed up-regulation of numerous neurogenesis- and/or development-associated genes shortly after ouabain exposure. These genes include molecular markers commonly used for the identification of NSPs. Under a strict culture regimen, auditory nerve-derived cells of adult mouse ears gave rise to neurospheres, suggesting that multipotent NSPs are present in adult cochlear nerve. Neurosphere assays on Sox2 transgenic mice revealed that Sox2+ glial cells are the source for NSPs. Our data also showed that acute injury or hypoxia enhances neurosphere formation. Taken together, our study revealed that glial cells of adult cochlea exhibit several NSP characteristics, and hence these mature non-neuronal cells may be important targets for promoting self-repair of degenerative auditory nerves.

Publication Title

Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59416
Neural Stem/Progenitor Cell Properties of Glial Cells in the Adult Auditory Nerve [ouabain]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Spiral ganglion neurons (SGNs) and the associated components of the auditory nerve are primary carriers of auditory information from hair cells to the brain. Loss of SGNs occurs with many pathological conditions, resulting in permanent sensorineural hearing loss. Neural stem/progenitors (NSPs) have been well-characterized in several locations of adult brain and retina. However, it is unclear whether NSPs are present in the adult auditory nerve. Here we examined the self-renewal potential of the adult auditory nerve using ouabain application as a well-established mouse model of acute SGN injury. The observed increase in cell proliferation, alteration in enchromatin/heterochromatin ratio and down-regulation of histone deacetylase expression in glial cells suggest that the quiescent glial cells convert to an activated state after SGN degeneration. This was further confirmed by global gene expression analysis of injured auditory nerves, which showed up-regulation of numerous neurogenesis- and/or development-associated genes shortly after ouabain exposure. These genes include molecular markers commonly used for the identification of NSPs. Under a strict culture regimen, auditory nerve-derived cells of adult mouse ears gave rise to neurospheres, suggesting that multipotent NSPs are present in adult cochlear nerve. Neurosphere assays on Sox2 transgenic mice revealed that Sox2+ glial cells are the source for NSPs. Our data also showed that acute injury or hypoxia enhances neurosphere formation. Taken together, our study revealed that glial cells of adult cochlea exhibit several NSP characteristics, and hence these mature non-neuronal cells may be important targets for promoting self-repair of degenerative auditory nerves.

Publication Title

Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65249
Neural Stem/Progenitor Cell Properties of Glial Cells in the Adult Auditory Nerve [cultured auditory nerve cells]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Spiral ganglion neurons (SGNs) and the associated components of the auditory nerve are primary carriers of auditory information from hair cells to the brain. Loss of SGNs occurs with many pathological conditions, resulting in permanent sensorineural hearing loss. Neural stem/progenitors (NSPs) have been well-characterized in several locations of adult brain and retina. However, it is unclear whether NSPs are present in the adult auditory nerve. Here we examined the self-renewal potential of the adult auditory nerve using ouabain application as a well-established mouse model of acute SGN injury. The observed increase in cell proliferation, alteration in enchromatin/heterochromatin ratio and down-regulation of histone deacetylase expression in glial cells suggest that the quiescent glial cells convert to an activated state after SGN degeneration. This was further confirmed by global gene expression analysis of injured auditory nerves, which showed up-regulation of numerous neurogenesis- and/or development-associated genes shortly after ouabain exposure. These genes include molecular markers commonly used for the identification of NSPs. Under a strict culture regimen, auditory nerve-derived cells of adult mouse ears gave rise to neurospheres, suggesting that multipotent NSPs are present in adult cochlear nerve. Neurosphere assays on Sox2 transgenic mice revealed that Sox2+ glial cells are the source for NSPs. Our data also showed that acute injury or hypoxia enhances neurosphere formation. Taken together, our study revealed that glial cells of adult cochlea exhibit several NSP characteristics, and hence these mature non-neuronal cells may be important targets for promoting self-repair of degenerative auditory nerves.

Publication Title

Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE106788
Identification of SoxC-regulated genes during neurogenesis in the developing spinal cord
  • organism-icon Gallus gallus, Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcription factor prospero homeobox protein 1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106786
Identification of SoxC-regulated genes during neurogenesis in the developing spinal cord [mouse]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The HMG-domain containing SoxC transcription factors Sox4 and Sox11 are expressed in the vertebrate central nervous system in neuronal precursors and neuroblasts. They are required during early stages of neurogenesis.

Publication Title

The transcription factor prospero homeobox protein 1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106787
Identification of SoxC-regulated genes during neurogenesis in the developing spinal cord [chicken]
  • organism-icon Gallus gallus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The HMG-domain containing SoxC transcription factors Sox4 and Sox11 are expressed in the vertebrate central nervous system in neuronal precursors and neuroblasts. They are required during early stages of neurogenesis.

Publication Title

The transcription factor prospero homeobox protein 1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76027
Expression data of sciatic nerves from mice with Schwann-cell specific Sip1 deletion compared to control mice.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Schwann cell maturation is tightly controlled by a set of transcriptional regulators. We have deleted the zinc-finger transcription factor Sip1 specifically from immature Schwann cells and observed a dramatic developmental delay.

Publication Title

Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair.

Sample Metadata Fields

Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact