We investigated the differential regulation patterns of type I anti-CD20 monoclonal antibody (mAb) rituximab and type II obinutuzumab on a transcriptional level. Using a panel of MCL cell lines, we determined the effects of obinutuzumab and rituximab as monotherapies as well as in combination on cell viability and proliferation.
Differential regulation patterns of the anti-CD20 antibodies obinutuzumab and rituximab in mantle cell lymphoma.
Specimen part, Cell line
View SamplesThe murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, B. burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN responsive genes was observed in severely arthritic C3H mice at one week of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, as C57BL/6-IL10-/- mice infected with B. burgdorferi develop more severe arthritis that C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at two and four weeks post infection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.
Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis.
No sample metadata fields
View SamplesGene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi
Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.
Specimen part
View SamplesT lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4+ regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4+ regulatory T cells but effector CD8a+ and CD4+ conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology. Overall design: GFP- CD3e+ CD8a+ CD4-, GFP- CD3e+ CD8a- CD4+ CD25- and GFP- CD3e+ CD8a- CD4+ CD25+ T cells were isolated from spleens of UBC-GFP mice transplanted with WT or cDKO lineage-depleted donor bone marrow following lethal irradiation of recipient mice. RNA-seq was performed on 3-4 biological replicates from each genotype for all T cell populations analyzed.
Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.
Specimen part, Cell line, Subject
View SamplesPlac1 is an X-linked (Xq26) trophoblast gene expressed at high levels in the placenta, at low levels in the testis, but not in other normal somatic tissues. However, it is re-expressed in several malignancies, including breast, colon, lung, gastric, liver and endometrial cancers as well as in most human cancer cell lines. Plac1 contains HLA-A2-restricted epitopes capable of eliciting a cytotoxic T lymphocyte (CTL) response against human breast cancer cells, and colorectal cancer patients with a Plac1-specific CTL response demonstrate long-term survival. To explore the role of Plac1 in cancer, mouse mammary tumor E0771 cells expressing high levels of Plac1 were transduced with a lentivirus expressing a Plac1 shRNA (E0771/shPlac1).
Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance In Mammary Tumorigenesis.
Cell line
View SamplesCockayne syndrome (CS) is an inherited neurodevelopmental disorder with progeroid features. Although the genes responsible for CS have been implicated in a variety of DNA repair- and transcription-related pathways, the nature of the molecular defect in CS remains mysterious. We sought to define this defect by expression analysis of cells lacking functional CSB, a SWI/SNF-like ATPase that is responsible for most CS cases.
Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling.
Subject
View SamplesMicroglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene expression and phenotypic profile of a variety of endogenous CNS cell types (astrocytes, neurons, microglia) as well as an influx of leukocytic cells (neutrophils, macrophages, T-cells) from the periphery. Many molecules and conditions can trigger a transformation of resting (or surveying) microglia to an activated (alerted/reactive) state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. Emphasis is placed on the role of specific molecular signaling systems such as hypoxia inducible factor-1 (HIF-1) and toll-like receptor-4 (TLR4) in regulating the microglial response in this setting. We then review histological and recent novel radiological data that confirms a key role for microglial activation in the setting of ischemic stroke in humans. We discuss recent progress in the pharmacological and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in preemptively targeting microglial activation in order to reduce stroke severity.
Microglia in ischemic brain injury.
Specimen part
View SamplesAlzheimer's disease (AD) is a heterogeneous disorder with multiple etiologies. Harnessing the immune system by blocking the programmed cell death receptor (PD)-1 pathway in an amyloid beta mouse model was shown to evoke a sequence of immune responses that lead to disease modification. Here, blocking PD-L1, a PD-1 ligand, was found to have similar efficacy to that of PD-1 blocking in disease modification, in both animal models of AD and of tauopathy. Targeting PD-L1 in a tau-driven disease model resulted in increased immunomodulatory monocyte-derived macrophages within the brain parenchyma. Single cell RNA-seq revealed that the homing macrophages expressed unique scavenger molecules including macrophage scavenger receptor 1 (MSR1), which was shown here to be required for the effect of PD-L1 blockade in disease modification. Overall, our results demonstrate that immune checkpoint blockade targeting the PD-1/PD-L1 pathway leads to modification of common factors that go awry in AD and dementia, and thus can potentially provide an immunotherapy to help combat these diseases. Overall design: Cell populations were sorted with FACSAriaIII (BD Biosciences, San Jose, CA). Prior to sorting, all samples were filtered through a 40-µm nylon mesh. For the isolation of monocytes-derived macrophages, samples were gated for CD45high and CD11bhigh (Brilliant-violet-421, 1:150, 30-F11, Biolegend Inc. San Diego, CA; APC CD11b, 1:100, M1/70, eBioscience), while excluding doublets. Isolated cells were single cell sorted into 384-well cell capture plates containing 2?µL of lysis solution and barcoded poly(T) reverse-transcription (RT) primers for single-cell RNA-seq84. Four empty wells were designated in each 384-well plate as a no-cell control during data analysis. Immediately after sorting, each plate was spun down to ensure cell immersion into the lysis solution, snap frozen on dry ice, and stored at -80?°C until processing. Single-cell libraries were prepared as previously described73. In brief, mRNA from cells sorted into cell capture plates was barcoded, converted into cDNA, and pooled using an automated pipeline. The pooled sample was then linearly amplified by T7 in vitro transcription, and the resulting RNA was fragmented and converted into a sequencing-ready library by tagging the samples with pooled barcodes and Illumina sequences during ligation, RT, and PCR. Each pool of cells was tested for library quality, and concentration was assessed, as described73.
PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesWe report the genome-wide RNA sequencing of bone marrow derived macrophages after sequential TLR agonist stimulation. Overall design: Examination of sequential TLR agonist stimulation. Bone marrow derived macrophages (BMDMs) were prepared from male animals 6-12 weeks of age. Cells were isolated from femurs and tibias. The bone marrow cells were and grown in macrophage growth medium (RPMI 1640 supplemented with 10% FBS (Gibco), 1% penicillin-streptomycin (Gibco), 2 mM L-glutamine (Gibco), 1 mM sodium pyruvate (Gibco), 0.01 M HEPES (AmericanBio), and 30% L929-conditioned media as a source of CSF-1), and plated on petri dishes. Macrophage growth medium was supplemented on day 3. Cells were plated for use on day 6. For sequential stimuli, cells were first stimulated with, PBS, 100 ng/mL Poly I:C (InvivoGen), or 5 ng/mL LPS derived from Escherichia coli 055:B5 (Sigma-Aldrich). 24 hours after the initial stimulation, the media was removed and cells were washed twice with warmed macrophage growth media, and then the media was replaced with Poly I:C or LPS.
Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice.
Specimen part, Cell line, Subject
View SamplesPrevious studies indicate that the triterpene glycoside actein from the herb black cohosh inhibits growth of human breast cancer cells. This study seeks to identify genes altered in human breast cancer cells by treatment with actein, using gene expression analysis. We treated MDA-MB-453 human breast cancer cells with actein at 2 doses, 20 or 40 g/mL, for 6 or 24 h. We identified 5 genes that were activated after each of the treatments that are known to play a role in cellular responses to diverse stresses, including the DNA damage and unfolded protein responses. In addition, four genes that mediate the integrated stress response (ISR), including activating transcription factor 4, were induced under at least one of the 4 treatment conditions. We used hierarchical clustering to define clusters comprising patterns of gene expression. Two ISR genes, activating transcription factor 3 (ATF3) and DNA damage- inducible transcript 3, and lipid biosynthetic genes were activated after exposure to actein at 40 g/mL for 6 h, whereas the cell cycle genes cyclin E2 and cell division cycle 25A were repressed. Our results suggest that actein induces 2 phases of the ISR, the survival phase and the apoptotic phase, depending on the dose and duration of treatment. We confirmed the results of gene expression analysis with real-time RT-PCR for 18 selected genes and Western blot analysis for ATF3. Since actein activated transcription factors that enhance apoptosis, and repressed cell cycle genes, it may be useful in the prevention and therapy of breast cancer.
The growth inhibitory effect of actein on human breast cancer cells is associated with activation of stress response pathways.
No sample metadata fields
View Samples