Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the ‘CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. Strikingly, this pro-longevity metabolic state is regulated cell-nonautonomously by CRTC-1 in the nervous system. CRTC-1/CREB act antagonistically with the functional PPARa ortholog, NHR-49 to promote distinct peripheral metabolic programs. Neuronal CRTC-1 drives mitochondrial fragmentation in distal tissues and suppresses the effect of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that transcriptional control of neuronal signals can override enzymatic regulation of metabolism in peripheral tissues. Central perception of energetic state therefore represents a target to promote healthy aging. Overall design: Experiment was performed with three biological replicates. Gravid adults grown at 20¡C on 100 mm NG plates seeded with OP50-1 E. coli were collected and treated with hypochlorite to release eggs. Eggs were incubated overnight in M9 media to obtain L1 synchronized populations. One thousand L1 larvae were grown on a 100 mm NG plate seeded with OP50-1 E. coli. Worms were harvested for RNA extraction when L4 larval stage was reached. Animals were collected and washed extensively with M9 media to remove bacteria. Worms were then snap frozen in liquid nitrogen. RNA was extracted by five freeze/thaw cycles in Qiazol then purified by RNeasy mini kit (Qiagen). RNA quality was checked using an Agilent Technologies 2100 Bioanalyzer. All samples had an RNA integrity number of 10. cDNA libraries were prepared from 4 ugs of total RNA using the TruSeq RNA Sample Preparation v2 kit (Illumina). 50-cycle paired-end sequencing was performed on an Illumina HiSeq 2000 by the Harvard Biopolymer Core. Read quality was evaluated with FASTQC. Adapter sequences and poor quality bases (<20) were trimmed and filtered with CUTADAPT, resulting in a median of 44 million reads per replicate. These were aligned to the C. elegans genome (ce6, WS238) using TopHat version 2.0.8 (Kim et al., 2013), with a median 35 million reads mapped in proper pairs. The number of reads mapping to each gene was counted with htseq-count. Genes with less than 1 Count Per Million Reads (CPM) were discarded from further analysis. Counts were normalized for sequencing depth and RNA composition across all samples with edgeR (Robinson et al., 2010). Genes were tested for differential expression between each mutant strain and wild-type using edgeR’s glm method. For each comparison, genes with less than 5 CPM were filtered and those with at least 50% change and False Discovery Rate (FDR) of 1% or less were considered differentially expressed.
Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal.
Specimen part, Subject
View SamplesMesenchymal stromal cells (MSCs) are multipotent stem cells with potent immunosuppressive and trophic support functions. Although bone marrow is considered the golden standard to isolate classical MSCs (BM-MSC), MSC-like cells are currently also derived from other, more easily accessible extra-embryonic tissues such as the umbilical cord. In this study we compared the gene expression profile of human Wharton's jelly explant-derived MSC cultures with two adult MSC populations derived from bone marrow, namely BM-MSC and multipotent adult progenitor cells (MAPC).
Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells.
Specimen part
View SamplesThe murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, B. burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN responsive genes was observed in severely arthritic C3H mice at one week of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, as C57BL/6-IL10-/- mice infected with B. burgdorferi develop more severe arthritis that C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at two and four weeks post infection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.
Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis.
No sample metadata fields
View SamplesGene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi
Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.
Specimen part
View SamplesT lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4+ regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4+ regulatory T cells but effector CD8a+ and CD4+ conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology. Overall design: GFP- CD3e+ CD8a+ CD4-, GFP- CD3e+ CD8a- CD4+ CD25- and GFP- CD3e+ CD8a- CD4+ CD25+ T cells were isolated from spleens of UBC-GFP mice transplanted with WT or cDKO lineage-depleted donor bone marrow following lethal irradiation of recipient mice. RNA-seq was performed on 3-4 biological replicates from each genotype for all T cell populations analyzed.
Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.
Specimen part, Treatment
View SamplesTo explore oncogene addiction programs in a genetically defined leukemia context we developed an AML mouse model driven by a conditional MLL-AF9 allele together with oncogenic Ras, which enabled us to examine the consequences of MLL-AF9 inhibition in established disease. In order to produce a tightly regulated system that was easy to monitor, we constructed two retroviral vectors containing dsRed-linked MLL-AF9 under control of a tetracycline response element promoter, and KrasG12D or NrasG12D linked to the Tet-off tet-transactivator, which activates TRE expression in a doxycycline repressible manner. Leukemias were generated by retroviral cotransduction of both vectors into hematopoietic stem and progenitor cells, which were transplanted into syngeneic mice. Cells harboring both constructs induced aggressive myelomonocytic leukemia. Five independent primary leukemia cell lines were established from bone marrow of terminal mice. Treatment of these lines with doxycycline rapidly turned off MLL-AF9 expression, and induced terminal myeloid differentiation and complete disease remission in vivo.
An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.
Specimen part, Treatment
View SamplesUsing an integrative approach combining a Tet-off conditional AML mouse model, global expression profiling following suppression of the driving MLL-AF9 oncogene, and a new Tet-on conditional shRNA expression system we have identified Myb as critical mediator of addiction to MLL-AF9. Suppression of Myb in established AML in vivo terminates aberrant self-renewal and triggers a terminal myeloid differentiation program that precisely phenocopies the effects of suppressing MLL-AF9. Remarkably, suppressing Myb effectively eradicates aggressive and chemotherapy resistant AML.
An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.
Specimen part
View SamplesA genome-wide RNA expression study based on a Phase II randomized placebo-controlled clinical trial of topiramate (TPM) treatment of methamphetamine (METH) dependence.
Transcriptome profiling and pathway analysis of genes expressed differentially in participants with or without a positive response to topiramate treatment for methamphetamine addiction.
Sex, Age, Specimen part, Treatment, Race, Subject, Time
View SamplesRNA seq analysis for pathwayidentification to identify Overall design: RNA Seq analysis of apoptotic resistant and WT neutrophils isolated from bone marrow and peritoneum after thiglycollate induced inflammation
Programmed cell removal by calreticulin in tissue homeostasis and cancer.
Specimen part, Cell line, Subject
View Samples