Using a chromatin regulator-focused shRNA library, we found that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes resistance to BRAF and MEK inhibitors. To investigate how SOX10 loss leads to drug resistance, we performed transcriptome sequencing (RNAseq) of both parental A375 (Ctrl. PLKO) and A375-SOX10KD (shSOX10-1, shSOX10-2) cells. To ask directly whether SOX10 is involved indrug resistance in BRAF(V600E) melanoma patients, we isolated RNA from paired biopsies from melanoma patients (pre- and post- treatment) , that had gained BRAF or MEK inhibitor resistance . We performed RNAseq analysis to determine changes in transcriptome upon drug resistance. Overall design: Investigate genes regulated by SOX10 and differntial gene expression between pre- and post-treatment biopsies. We use short hairpin RNA to suppression SOX10 in A375 cells and cells were harvested with trizol reagent for RNA isolation. For paired biopsies (patient samples) we collected the first biopsy before the initiation of treatment and the second biopsy after drug resistance developed. RNA was isolated from FFPE samples and subjected for RNA sequencing.
Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma.
Sex, Age, Specimen part, Cell line, Subject
View SamplesGene expression analysis in control and diabetic rats. Diabetes-induced erectile dysfunction in rat model of DM. 10 weeks of streptozotocin induced diabetes. F344 Rats.
Microarray analysis reveals novel gene expression changes associated with erectile dysfunction in diabetic rats.
No sample metadata fields
View SamplesBackground and Aim: Fra-1 (Fos-related antigen-1) is a member of the AP1 (activator protein-1) family of transcription factors. We have recently shown that Fra-1 is necessary for breast cancer cells to metastasize in vivo, and that breast cancer outcome can be predicted by a classifier comprising genes that are expressed in a Fra-1-dependent fashion. Here, we show that Fra-1 plays an important role also in colon cancer progression. Methods: We compared proliferation rates of parental and Fra-1-depleted colon cancer cells in vitro under 2D, 3D, and attachment-free conditions and in vivo upon subcutaneous and intravenous injections into mice. We also compared RNA expression profiles of colon cancer cells with and without Fra-1 expression. Results: Fra-1 depletion impair colony outgrowth of human colon cancer cells in soft agar and in suspension, whereas it does not affect proliferation on 2D culture plates. Consistent with this, upon subcutaneous injection into mice, tumors formed by Fra-1-depleted colon cancer cells are only three times smaller than those produced by control cells. In contrast, when injected intravenously, Fra-1 depletion causes 200-fold reduction in tumor burden. Consistent with the more aggressive characteristics of Fra-1-proficient tumors, the prognosis of colon cancer patients can be predicted by a Fra-1 classifier generated by comparing RNA profiles of parental and Fra-1-depleted colon cancer cells. Conclusions: Our results demonstrate that Fra-1 is an important determinant of the metastatic potential of human colon cancer cells, and suggest that a Fra-1 classifier can be used as a prognostic predictor in colon cancer patients. Overall design: HT29 cell line, two shRNAs against Fra-1, one empty vector control, three biological replicates
Fra-1 is a key driver of colon cancer metastasis and a Fra-1 classifier predicts disease-free survival.
No sample metadata fields
View SamplesPurpose: To identify the molecular phenotype of endothelial cells (EC) isolated from the unique vasculature of the corpus cavernosum.
Transcriptional profiling of human cavernosal endothelial cells reveals distinctive cell adhesion phenotype and role for claudin 11 in vascular barrier function.
Sex, Specimen part
View SamplesAddition of 3 new arrays made from carbon limited chemostat of CENPK113-7D and 3 new arrays made from aerobic carbon limited chemostat of CENPK113-7D Complmentary data to the data of the serie GSE1723.
Exploiting combinatorial cultivation conditions to infer transcriptional regulation.
No sample metadata fields
View SamplesThe overall goal of our studies is to elucidate the cellular and molecular mechanism by which the transcription factor Casz1 functions in murine heart development. We established that Casz1 is expressed in myocardial progenitor cells beginning at E7.5 and in differentiated cardiomyocytes throughout development. We generated conditional Casz1 knockout mice to show that ablation of CASZ1 in Nkx2.5-positive cardiomyocytes leads to cardiac hypoplasia, ventricular septal defects and lethality by E13.5. To identify the pathways and networks by which Casz1 regulates cardiomyocyte development, we used RNA-Seq and identified genes involved in cell proliferation are upregulated in Casz1 mutants compared to wild-type littermates. We conclude that Casz1 is essential for cardiac development and has a pivotal role in regulating part of the cardiac transcriptional program. Overall design: 3 biological replicates of the two genotypes (Nkx2-5+/+,Casz1f/+ and Nkx2-5Cre/+,Casz1f/f) were used for RNA-seq to determine genes that are differentially expressed in the murine heart when Casz1 is mutated. Nkx2-5+/+,Casz1f/+ were used as wild-type controls for comparison.
Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development.
No sample metadata fields
View SamplesClinicians need additional metrics for predicting quality of human oocytes for IVF procedures. Human polar bodies reflect the oocyte transcript profile. Quantitation of polar body mRNAs could allow for both oocyte ranking and embryo preferences in IVF applications. The transcriptome of a polar body has never been reported, in any organism. Overall design: Eight total samples. There are 2 biological replicates of the following four conditions: pooled oocytes and their sister polar bodies and a single oocyte and its sister polar body.
The transcriptome of a human polar body accurately reflects its sibling oocyte.
Specimen part, Subject
View SamplesNon-neuronal cell types such as astrocytes can contribute to Parkinson's disease (PD) pathology. The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is one of the most common known causes of familial PD. To characterize its effect on astrocytes, we developed a protocol to produce midbrain-patterned astrocytes from human induced pluripotent stem cells (iPSCs) derived from PD LRRK2 G2019S patients and healthy controls. In order to understand the effect of this mutation on astrocyte function, we compared the gene expression profiles of iPSC-derived midbrain-patterned astrocytes from PD patients with those from healthy controls. Overall design: Bulk RNA-Seq profiles of human iPSC-derived midbrain-patterned astrocytes from 7 donors, including 4 patients with Parkinson's disease who carry the LRRK2 G2019S mutation, and 3 healthy control individuals
RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S Parkinson's iPSC-derived astrocytes.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951.
Sex, Age, Specimen part
View SamplesBackground: Intrinsic glioma subtypes (IGS) are molecularly similar tumors that can be identified based on unsupervised gene-expression analysis. Here, we have evaluated the clinical relevance of these subtypes within EORTC26951, a randomized phase III clinical trial investigating adjuvant procarbazine, CCNU (lomustine) and vincristine (PCV) chemotherapy in anaplastic oligodendroglial tumors. Our study is the first to include gene-expression profiles of formalin-fixed and paraffin-embedded (FFPE) clinical trial samples. Methods: Gene-expression profiling was performed in 140 samples: 47 fresh frozen and 93 FFPE, on HU133_Plus_2.0 and HuEx_1.0_st arrays (Affymetrix), respectively. Results: All previously identified six intrinsic glioma subtypes are present in EORTC26951. This confirms that different molecular subtypes are present within a well-defined histological subtype. Intrinsic subtypes are highly prognostic for overall- (OS) and progression-free survival (PFS). They are prognostic for PFS independent of clinical (age, performance, tumor location), molecular (1p19qLOH, IDH1 mutation, MGMT methylation) and histological parameters. Combining known molecular (1p19LOH, IDH1) prognostic parameters with intrinsic subtypes improves outcome prediction (Proportion of Explained Variation 30% v 23%). Specific genetic changes (IDH1, 1p19qLOH and EGFR amplification) segregate into different subtypes. We identified one subtype, IGS-9 (characterized by a high percentage of 1p19qLOH and IDH1 mutations), that especially benefits from PCV chemotherapy. Median OS in this subtype was 5.5 years after radiotherapy (RT) alone v 12.8 years after RT/PCV; P=0.0349; HR 2.18, 95% CI [1.06, 4.50]. Conclusion: Intrinsic subtypes are highly prognostic in EORTC26951 and improve outcome prediction when combined with other prognostic factors. Tumors assigned to IGS-9 benefit from adjuvant PCV
Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951.
Sex, Age, Specimen part
View Samples