Fumarate hydratase (FH) mutation causes hereditary type 2 papillary renal cell carcinoma (HLRCC, Hereditary Leiomyomatosis and Renal Cell Cancer (MM ID # 605839)). The main effect of FH mutation is fumarate accumulation. The current paradigm posits that the main consequence of fumarate accumulation is HIF-a stabilization. Paradoxically, FH mutation differs from other HIF-a stabilizing mutations, such as VHL and SDH mutations, in its associated tumor types. We identified that fumarate can directly up-regulate antioxidant response element (ARE)-controlled genes. We demonstrated that AKR1B10 is an ARE-controlled gene and is up-regulated upon FH knockdown as well as in FH-null cell lines. AKR1B10 overexpression is also a prominent feature in both hereditary and sporadic PRCC2. This phenotype better explains the similarities between hereditary and sporadic PRCC2.
An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma.
Disease, Disease stage
View SamplesThe goal of this experiment was to compare the genes expressed in malignant peripheral nerve sheath tumors (MPNSTs) that arise in zebrafish as a result of homozygous mutation of the p53 gene or heterozygous mutation of several different ribosomal protein (rp) mutations. Since MPNSTs arise very rarely in wild type zebrafish, it seemed a possibility that p53 and rps may in fact be functioning in similar pathways. The tumors arising from the different mutations had been previously classified as similar by histology, thus the goal of the array experiments was to establish if any molecular signatures could be found that could delineate the p53 from the rp MPNSTs.
Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations.
No sample metadata fields
View SamplesPseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (??mito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, qPCR and western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), while DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: ??mito depolarized, Cacyto increased and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control ??mito, Ca2+ release from the ER and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin, staurosporine but activates Bax- and Bak-independent apoptosis in response to C12. Overall design: Gene expression profiling of mouse embryo fibroblasts from WT and Bax/Bak double knock-out mice (C12 responsive and non-reponsive cell lines).
Paraoxonase 2 serves a proapopotic function in mouse and human cells in response to the Pseudomonas aeruginosa quorum-sensing molecule N-(3-Oxododecanoyl)-homoserine lactone.
No sample metadata fields
View SamplesDuring CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To which extent symptoms in SATB2-related human pathologies depend on developmental or adult functions of the protein remains to be established. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we compared SATB2 protein interactomes and SATB2-driven gene expression programs at the two ontogenetic stages by co-IP mass spectrometry and RNAseq analyses, respectively. Our results demonstrated that 1) SATB2 interacts with different protein networks at the two ontogenetic stages, with a switch from transcriptional repression towards organization of chromatin structure and 2) SATB2 determines differential transcriptional programs in neonatal vs adult cortex. Overall design: Analysis of neocortex transcriptomes of adult (3 month old) SATB2-deficient (Satb2flx/flx::Camk2a-Cre ) vs floxed mice
Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability.
Age, Specimen part, Cell line, Subject
View SamplesWe compare transcriptomic profiles of intestinal epithelial cells obtained from the small intestine of germ-free and conventionally-caged mice. Intestinal epithelial cells were harvested from the intestine of conventional or germ-free C57Bl6J mice. Directional polyA RNA-seq was performed on RNA fom cells using standard Illumina protocols. Microbiota induce decreased expression of the Clec2e gene. Overall design: Intestinal epithelial cells were harvested from the intestine of conventional or germ-free C57Bl6J mice.
Microbiota Inhibit Epithelial Pathogen Adherence by Epigenetically Regulating C-Type Lectin Expression.
Subject
View SamplesSIRT1 deacetylase functions in a variety of cells and tissues to mitigate age- and disease-induced damages. However, it remains unknown if SIRT1 also acts to prevent pathological changes that accrue in motor units, and specifically alpha-motor neurons, with advancing age and during the progression of amyotrophic lateral sclerosis (ALS). Here, we show that SIRT1 expression decreases in the spinal cord of wild type mice with advancing age. Using mouse models that overexpress or inactivate SIRT1 in motor neurons, we discovered that SIRT1 prevents age-related degeneration of motor neurons' presynaptic sites at neuromuscular junctions (NMJs). We also found that increasing SIRT1 in motor neurons delays degeneration of presynaptic sites at NMJs and extends the lifespan of SOD1G93A mice. Thus, SIRT1 has a similar effect on aging and ALS-affected motor neurons, two conditions in which a remarkable number of transcripts are similarly altered in the spinal cord. These include genes involved in inflammatory and immune responses and genes with known function at synapses. These findings show that SIRT1 functions to mitigate pathological changes induced by aging and ALS, two conditions with a surprising degree of overlap in the spinal cord. Overall design: Eight replicates spinal cords from mice aged 18-24 months, eight replicates of spinal cords from mice aged 3-4 months, 3 replicates of spinal cords from ALS symptomatic mice aged 5-6 months and 3 replicates of spinal cords from wt controls aged 5-6 months.
SIRT1 deacetylase in aging-induced neuromuscular degeneration and amyotrophic lateral sclerosis.
Cell line, Subject
View SamplesAneuploidy, an incorrect chromosome number, is the leading cause of miscarriages and mental retardation in humans and is a hallmark of cancer. We examined the effects of aneuploidy on primary mouse cells by generating a series of cell lines that carry an extra copy of one of four mouse chromosomes. In all four trisomic lines proliferation was impaired and metabolic properties were altered. Immortalization, the acquisition of the ability to proliferate indefinitely, was also affected by the presence of an additional chromosome, with some chromosomes inhibiting immortalization while others accelerating the process. Our data indicate that aneuploidy decreases not only organismal but also cellular fitness and elicits traits that are shared between different aneuploid cells.
Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Zinc finger protein Zfp335 is required for the formation of the naïve T cell compartment.
Specimen part
View SamplesThe generation of nave T lymphocytes is critical for immune function yet the mechanisms governing their maturation remain incompletely understood. We have identified a mouse mutant, bloto, that harbors a hypomorphic mutation in the zinc finger protein Zfp335. Mutant blt/blt mice exhibit a nave T cell deficiency due to an intrinsic developmental defect that begins to manifest in the thymus and continues into the periphery, affecting T cells that have recently undergone thymic egress. Zfp335 binds to promoter regions via a consensus motif, and its target genes are enriched in categories related to protein metabolism, mitochondrial function and transcriptional regulation. Restoring the expression of one target, Ankle2, partially rescues T cell maturation. Our findings identify Zfp335 as a transcription factor and essential regulator of late-stage intrathymic and post-thymic T cell maturation.
Zinc finger protein Zfp335 is required for the formation of the naïve T cell compartment.
Specimen part
View SamplesThe generation of nave T lymphocytes is critical for immune function yet the mechanisms governing their maturation remain incompletely understood. We have identified a mouse mutant, bloto, that harbors a hypomorphic mutation in the zinc finger protein Zfp335. Mutant blt/blt mice exhibit a nave T cell deficiency due to an intrinsic developmental defect that begins to manifest in the thymus and continues into the periphery, affecting T cells that have recently undergone thymic egress. Zfp335 binds to promoter regions via a consensus motif, and its target genes are enriched in categories related to protein metabolism, mitochondrial function and transcriptional regulation. Restoring the expression of one target, Ankle2, partially rescues T cell maturation. Our findings identify Zfp335 as a transcription factor and essential regulator of late-stage intrathymic and post-thymic T cell maturation.
Zinc finger protein Zfp335 is required for the formation of the naïve T cell compartment.
Specimen part
View Samples