refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 215 results
Sort by

Filters

Technology

Platform

accession-icon GSE46863
Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Right ventricular failure (RVF) due to pressure load is a major cause of death in congenital heart diseases and pulmonary hypertension. The mechanisms of RVF are yet unknown. Research is hampered by the lack of a good RVF model. Our aim was to study the pathophysiology of RVF in a rat model of chronic pressure load.

Publication Title

Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE17475
Expression data from lung adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically well characterized adenocarcinomas of the lung. In addition, EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry.

Publication Title

Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14287
Expression data from precisely staged blastula wild-type and haploid Drosophila embryos
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

In most embryos, the mid-blastula transition is a complex process featuring maternal RNA degradation, cell cycle pause, zygotic transcriptional activation and morphological changes. The nucleocytoplasmic (N/C) ratio has been proposed to control the multiple events at MBT. To understand the global transcriptional response to the changes of the N/C ratio, we profiled wild type and haploid embryos using cDNA microarrays at three developmental stages.

Publication Title

Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26661
Knockdown of KSHV viral interferon-regulatory factor 3 (vIRF-3) in primary effusion lymphoma (PEL) cells by RNA-Interference
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Kaposis sarcoma-associated hepesvirus (KSHV) encodes four genes with homology to human interferon regulatory factors (IRFs). One of these IRFs, the viral interferon regulatory factor 3 (vIRF-3) is expressed in latently infected PEL cells and required for their continuous proliferation. Moreover, vIRF-3 is known to be involved in modulation of the type I interferon response.

Publication Title

Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 3 inhibits gamma interferon and major histocompatibility complex class II expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE5587
tourt-affy-arabi-307860
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Early Growth Response (Egr) family of transcription factors consists of 4 members (Egr1-4) that are expressed in a wide variety of cell types. A large body of evidence point to a role for Egr transcription factors in growth, survival, and differentiation. A major unanswered question is whether Egr transcription factors serve similar functions in diverse cell types by activating a common set of target genes. Signal transduction cascades in neurons and lymphocytes show striking parallels. Activation of either cell type activates the Ras-MAPK pathway and, in parallel, leads to increases in intracellular calcium stimulating the calcineurin-NFAT pathway. In both cell types, the strength of the activation signal affects the cellular outcomes and very strong stimuli lead to cell death. Notably both these pathways converge on the induction of Egr genes. We believe that downstream targets of Egr transcription factors in lymphocytes may also be activated by Egr factors in activated neurons. There is precedence for common target gene activation in these two cell types: apoptosis in both activated T cells and methamphetamine stimulated neurons occurs via FasL induction by NFAT transcription factors. We propose to use developing T lymphocytes (thymocytes) as a model system for discovery of Egr-dependent target genes for several reasons. First, we have observed a prominent survival defect in thymocytes from mice deficient in both Egr1 and Egr3 (1/3 DKO) and a partial differention block in the immature double negative (DN) stage. In addition, thymocytes are an easily manipulatable cell type, and the DN subpopulation affected in 1/3 DKO mice can be isolated to very high purity. We anticipate that 1/3 DKO thymocytes will provide an excellent experimental system that will provide insight into Egr-dependent transcription in neuronal development, activation, and death.

Publication Title

Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP124495
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [Tx FSC]
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of fibroblastic stromal cells of skin-draining and intestinal-draining lymph nodes from endogenous and transplanted lymph nodes at the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP124959
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [resDCs]
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of resident dendritic cells of skin-draining and intestinal-draining lymph nodes from endogenous and lymph nodes transplanted to the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP150769
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [migDC]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of migratory dendritic cells of skin-draining and intestinal-draining lymph nodes from endogenous and lymph nodes transplanted to the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP158776
RNA sequencing of FHR1-treated human monocytes
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The plasma protein FHR1 induces release of inflammatory cytokines IL-1ß, IL-6, IL-18 or TNFa from blood-derived human monocytes. RNA sequencing was performed from RNA of BSA- or FHR1-treated monocytes from 4 different donors. In response to FHR1, 522 monocytic genes were upregulated (gene ontology enrichment analysis), including 35 inflammation related genes, e.g. TNF. Also, G protein-coupled receptors such as EMR2/ADGRE2 were upregulated in response to FHR1. Overall design: Blood-derived monocytes were treated with BSA or FHR1, after 4h RNA was isolated. RNA of 4 donors were combined and sequenced.

Publication Title

Serum FHR1 binding to necrotic-type cells activates monocytic inflammasome and marks necrotic sites in vasculopathies.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE23008
Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mice with the two calcium-stmulated adenylyl cyclase isoforms (AC1 and AC8; DKO mice) knocked-out show conditioned fear memory deficits. We assessed gene expression changes at baseline and several time points after conditioned fear learning to assess transcriptional changes at different stages of learning. Transcriptional changes were assessed in the amydgdala and hippocampus of DKO and wild-type mice.

Publication Title

Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact