Induced Treg (iTreg) cells are essential for tolerance and can be used therapeutically, yet their stability in vivo and mechanisms of suppression are unresolved. Here, we used a treatment model of colitis to examine the role of autologous IL-10 in iTreg cell function. Mice treated with IL-10+/+ iTreg cells in combination with IL-10/ natural Treg (nTreg) cells survived and gained weight, even though iTreg cells were numerically disadvantaged and comprised just ~20% of all Treg cells in treated mice. Notably, ~85% of the transferred iTreg cells lost Foxp3 expression (ex-iTreg) but retained a portion of the iTreg transcriptome which failed to limit their pathogenic potential. The TCR repertoires of iTreg and ex-iTreg cells exhibited almost no overlap, which indicates that the two populations are clonally unrelated and maintained by different selective pressures. These data demonstrate a potent and critical role for iTreg cell produced IL-10 that can supplant the IL-10 produced by nTreg cells and compensate for the inherent instability of the iTreg population.
IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy.
Treatment
View SamplesAnalysis of Foxp3 ablated peripheral regulatory T cells. Regulatory T cells require the expression of the transcription factor Foxp3 for thymic development. It is not known whether continuous expression of Foxp3 is required for the maintained function of mature regulatory T cells in the periphery. Results indicate changes to the regulatory T cell developmental program in the absence of Foxp3.
Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3.
No sample metadata fields
View SamplesStrain differences in gene expression in the hypothalamus of BXD recombinant inbred mice
Sex-specific modulation of gene expression networks in murine hypothalamus.
Sex, Age, Specimen part
View SamplesTrascriptional analysis of CD2 hi and CD25 lo CD4+ effector T cells during acute viral infection. SMARTA cells were transferred into B6 mice, followed by infection with LCMV. At day 5 post-infection, CD25 hi and CD25 lo SMARTA cells were isolated from the spleen by FACS. Consistent with our prior studies showing that CD25 lo early effector cells give rise to both Tfh effector cells and memory T cells, we observed gene expression in the CD25 lo population consistent with Tfh differentiation. Conversely, CD25 hi effector cells expressed markers consistent with Th1 differentiation and short-term survival. Overall design: mRNA profiles of monoclonal transgenic CD4+ T cells with divergent CD25 surface expression 5 days post LCMV infection in mice
TCR signal strength controls the differentiation of CD4<sup>+</sup> effector and memory T cells.
Specimen part, Cell line, Subject
View SamplesFollowing infection with LCMV, CD4+ SMARTA TCR transgenic cells (specific for the gp61-80 epitope of the LCMV glycoprotein) rapidly expand, become effector cells, and go on to form a long-lived memory population. Following infection with a recombinant Listeria monocytogenes expressing the LCMV epitope gp61-80, SMARTA cells also expand but display defective effector differentiation and fail to form memory. In an attempt to understand the signals required for CD4 T cell memory differentiation, we compared gene expression by SMARTA cells at the peak of the primary response following either Lm-gp61 or LCMV infection.
Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory.
No sample metadata fields
View SamplesWe use single-cell RNA-seq to determine distinct selection phenotypes of 2 rare thymic Treg cell progenitors as well as mature thymic Treg cells Overall design: A single cell suspension was generated from murine thymus then magnetically depleted for CD8/Ter119 before sorting CD25+Foxp3-, CD25-Foxp3lo and CD25+Foxp3+ cells from CD4+CD73- thymocytes on a BD Aria II. The 10x Genomic platform…
Thymic regulatory T cells arise via two distinct developmental programs.
Age, Cell line, Subject
View SamplesPreimplantation Genetic Testing (PGT), which encompasses both Preimplantation Genetic Diagnosis (PGD) and Preimplantation Genetic Screening (PGS), is a form of prenatal screening done on embryos conceived through assisted reproduction techniques (ART) prior to the initiation of pregnancy to ensure that only select embryos are used for transfer. PGT is typically performed on 8-cell embryos derived from either in vitro fertilization or intracytoplasmic sperm injection (ICSI) followed by extended culture. PGT requires a highly invasive embryo biopsy procedure that involves 1) incubating embryos in divalent-cation-deficient medium to disrupt cell adhesion, 2) breaching the protective zona pellucida with acid Tyrodes, laser drilling, or mechanical force and 3) aspirating one or two blastomeres. In this study we developed a mouse model of the embryo biopsy procedure inherent to PGT to determine the effect of various aspects of the procedure (incubation in Ca2+/Mg2+-free medium (CMF), acid Tyrodes treatment, blastomere aspiration), performed individually or in combination, on global patterns of gene expression in the resulting blastocysts.
The effect of blastomere biopsy on preimplantation mouse embryo development and global gene expression.
Sex
View SamplesBiological comparison of gene expression profiles of adult male whole Muta™Mouse lung with its immortalized 100% confluent epithelial lung cell line counterpart. White, P.A.,et al. 2003. Development and characterization of an epithelial cell line from Muta™Mouse lung. Environ Mol Mutagen 42,3 pgs 166-184
Comprehensive comparison of six microarray technologies.
Sex, Specimen part, Cell line, Subject
View SamplesEndothelin signaling is required for neural crest migration and homeostatic regulation of blood pressure. Here we report that constitutive over-expression of Endothelin-2 (Edn2) in the mouse retina perturbs vascular development by inhibiting endothelial cell (EC) migration across the retinal surface and subsequent EC invasion into the retina. Developing endothelial cells exist in one of two states: tip cells at the growing front, and stalk cells in the vascular plexus behind the front. This division of endothelial cell states is one of the central organizing principle of angiogenesis. In the developing retina, Edn2 over-expression leads to over-production of endothelial tip cells by both morphologic and molecular criteria. Spatially localized over-expression of Edn2 produces a correspondingly localized endothelial response. Edn2 over-expression in the early embryo inhibits vascular development at mid-gestation, but Edn2 over-expression in developing skin and brain has no discernable effect on vascular structure. Inhibition of retinal angiogenesis by Edn2 requires expression of Endothelin receptor A (Ednra) but not Ednrb in the neural retina. Taken together, these observations imply that the neural retina responds to Edn2 by synthesizing one or more factors that promote the endothelial tip cell state and inhibit angiogenesis. The response to Edn2 is sufficiently potent that it over-rides the activities of other homeostatic regulators of angiogenesis, such as vascular endothelial growth factor.
Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis.
Specimen part
View SamplesIt It is known that functional maturation of the small intestine occurring during the weaning period is facilitated by glucocorticoids (such as hydrocortisone, HC) including the increased expression of digestive hydrolases. However, the molecular mechanism(s) are not well understood, particularly in human gut. Here we report a microarray analysis of HC- induced changes in gene expression in H4 (a human fetal small intestinal epithelial cell line well-characterized in numerous previous studies). This study identified a large number of HC-affected genes, some involved in metabolism, cell cycle regulation, cell polarity, tight junction formation, and interactions with extracellular matrices. These effects could play an important role in HC-mediated enterocyte maturation in vivo and in vitro.
Hydrocortisone induces changes in gene expression and differentiation in immature human enterocytes.
Cell line, Treatment
View Samples