Background. Vaginal atrophy (VA) is the thinning of the vaginal epithelial lining, typically the result of lowered estrogen levels during menopause. Some of the consequences of VA include increased susceptibility to bacterial infection, pain during sexual intercourse, and vaginal burning or itching. Although estrogen treatment is highly effective, alternative therapies are also desired for women who are not candidates for hormone replacement therapy (HRT). The ovariectomized (OVX) rat is widely accepted as an appropriate animal model for many estrogen-dependent responses in humans; however, since reproductive biology can vary significantly between mammalian systems, this study examined how well the OVX rat recapitulates human biology at the transcriptional level. This report describes an analysis of expression profiling data, comparing the responses of rat and human vaginae to estrogen treatment. Results. The level of differential expression between pre- vs. post- estrogen treatment was calculated for each of the human and OVX rat datasets. Probe sets corresponding to orthologous rat and human genes were mapped to each other using NCBI Homologene. A positive correlation was observed between the rat and human responses to estrogen. Genes belonging to several biological pathways and GO categories were similarly differentially expressed in rat and human. A large number of the coordinately regulated biological processes are already known to be involved in human VA, such as inflammation, epithelial development, and EGF pathway activation. Conclusions. At the transcriptional level, there is evidence of significant overlap of the effects of estrogen treatment between the OVX rat and human VA samples.
Molecular analysis of the vaginal response to estrogens in the ovariectomized rat and postmenopausal woman.
Age
View SamplesThe aim was to identify genes that were commonly influenced by a siRNA targeting PRKCD in breast cancer cell lines.
Down Regulation of CLDND1 Induces Apoptosis in Breast Cancer Cells.
Cell line, Treatment
View SamplesTo uncover the gene expression alterations that occur during lung cancer progression, we interrogated the gene expression state of neoplastic cells at different stages of malignant progression. We initiated tumors in KrasLSL-G12D/+;p53flox/flox;R26LSL-tdTomato (KPT) mice with a pool of barcoded lentiviral-Cre vectors and purified Tomatopositive cancer cells away from the diverse and variable stromal cell populations. Five to nine months after tumor initiation, cancer cells were isolated from individual primary tumors and metastases using fluorescence-activated cell sorting. Sequencing of the barcode region of the integrated lentiviral vectors established primary tumor-metastasis and metastasis-metastasis relationships. Tumor barcoding allowed us to unequivocally distinguish non-metastatic primary tumors (TnonMet) from those primary tumors that had seeded metastases (TMet). We profiled 10 TnonMet samples as well as TMet and metastasis (Met) samples representing 12 metastatic events. To examine additional earlier stages of lung cancer development, we also analyzed premalignant cells from hyperplasias that develop in KPT mice shortly after tumor initiation (KPT-Early; KPT-E), as well as tumors from KrasG12D;R26LSL-tdTomato (KT) mice which rarely gain metastatic ability Overall design: This study includes 52 samples: 3 KP late samples, 3KPT early samples,10 non-metastatic primary tumors, 9 metastatic primary tumors, and 27 metastasis in different organs. total RNA was isolated and prepared for sequencing using the Ovation® RNA-Seq system and Illumina TruSeq DNA kit (v2) to generate 100bp paired end reads. Reads were aligned to mm10.
Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis.
Subject
View SamplesPeripheral whole blood-based gene expression profiling has become one of the most common strategies exploited in the development of clinically relevant biomarkers. However, the ability to identify biologically meaningful conclusions from gene expression patterns in whole blood is highly problematic. First, it is difficult to know whether or not expression patterns in whole blood capture those in primary tissues. Second, if explicit steps are not taken to accommodate the extremely elevated expression levels of globin in blood then large-scale multi-probe microarray-based studies can be severely compromised. Many studies consider the use of mouse blood as a model for human blood in addition to considering blood gene expression levels as a general surrogate for gene expression levels in other tissues. We explored the effects of globin reduction on peripheral mouse blood in the detection of genes known to be expressed in human tissues. Globin reduction resulted in 1.) a significant increase in the number of probes detected (5840 944 vs 12411 1904); 2.) increased expression for 4128 probe sets compared to non-globin reduced blood (p < .001, two-fold); 3.) improved detection of genes associated with many biological pathways and diseases; and 4.) an increased ability to detect genes expressed in 27 human tissues (p < 10-4). This study suggests that although microarray-based mouse blood gene expression studies that do not consider the effects of globin are severely compromised, globin-reduced mouse whole blood gene expression studies can be used to capture the expression profiles of genes known to contribute to various human diseases.
The effects of globin on microarray-based gene expression analysis of mouse blood.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.
Treatment, Time
View SamplesAnalysis of ALR-deficient cells indicates that ALRs are not required for the IFN response to intracellular DNA. To explore whether AIM2-like receptors activated another innate signaling pathway upon
The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.
Treatment, Time
View SamplesUterine leiomyomata, or fibroids, are benign tumors of the uterine myometrium that significantly affect up to 30% of reproductive-age women. Despite being the primary cause of hysterectomy in the United States, accounting for up to 200,000 procedures annually, the etiology of leiomyoma remains largely unknown. Due to the lack of an effective medicinal therapy for these tumors, this disease continues to have a tremendous negative impact on womens health. As a basis for understanding leiomyoma pathogenesis and identifying targets for pharmacotherapy, we conducted transcriptional profiling of leiomyoma and unaffected myometrium from humans and Eker rats, the best characterized preclinical model of leiomyoma. A global comparison of mRNA from leiomyoma versus myometrium in human and rat identified a highly significant overlap of dysregulated gene expression in leiomyoma. An unbiased pathway analysis using a method of gene set enrichment based on the Sigpathway algorithm detected the mammalian target of rapamycin (mTOR) pathway as one of the most highly upregulated pathways in both human and rat tumors. Activation of this pathway was confirmed in both human and rat leiomyomata at the protein level via Western. Inhibition of mTOR in female Eker rats with the rapamycin analog WAY-129327 for 2 weeks decreased mTOR signaling and cell proliferation in tumors, and treatment for 4 months significantly decreased tumor incidence, multiplicity and size. These results identify dysregulated mTOR signaling as a component of leiomyoma etiology across species and directly demonstrate the dependence of these tumors on mTOR signaling for growth in the Eker rat. Modulation of this pathway warrants additional investigation as a potential therapy for uterine leiomyoma.
Comparison of human and rat uterine leiomyomata: identification of a dysregulated mammalian target of rapamycin pathway.
No sample metadata fields
View SamplesComparison between in vitro transcription- and cDNA-mediated annealing, selection and ligation (DASL)-based assays on brain-specific reference RNA, and postmortem frozen and formalin fixed brain tissue from autistic and control cases. Investigation of data preprocessing techniques for DASL-assayed RNA samples from frozen brain tissue.
Preprocessing and Quality Control Strategies for Illumina DASL Assay-Based Brain Gene Expression Studies with Semi-Degraded Samples.
Specimen part, Disease
View SamplesMicroarray-based gene expression analysis of peripheral whole blood is a common strategy in the development of clinically relevant biomarker panels for a variety of human diseases. However, the results of such an analysis are often plagued by decreased sensitivity and reliability due to the effects of relatively high levels of globin mRNA in whole blood. Globin reduction assays have been shown to overcome such effects, but they require large amounts of total RNA and may induce distinct gene expression profiles. The Illumina whole-genome DASL (WG-DASL) assay can detect gene expression levels using partially degraded RNA samples and has the potential to detect rare transcripts present in highly heterogeneous whole blood samples without the need for globin reduction. We therefore assessed the utility of the WG-DASL assay in the analysis of peripheral whole blood gene expression profiles. We find that gene expression detection is significantly increased with the use of WG-DASL compared to the standard in vitro transcription-based direct hybridization (IVT), while globin-probe-negative WG-DASL did not exhibit significant improvements over globin-probe-positive WG-DASL. Globin reduction increases the detection sensitivity and reliability of both WG-DASL and IVT with little effect on raw intensity correlations: raw intensity correlations between total RNA and globin-reduced RNA were 0.970 for IVT and 0.981 for WG-DASL. Overall, the detection sensitivity of the WG-DASL assay is higher than the IVT-based direct hybridization assay, with or without globin reduction, and should be considered in conjunction with globin reduction methods for future blood-based gene expression studies.
Gene expression profiling of human whole blood samples with the Illumina WG-DASL assay.
Specimen part
View SamplesExtracellular matrix interactions play essential roles in normal physiology and many pathological processes. Here, we report a novel screening platform capable of measuring phenotypic responses to combinations of ECM molecules. While the importance of ECM interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Using a genetic mouse model of lung adenocarcinoma, we measured the ECM-dependent adhesion of tumor-derived cells. Hierarchical clustering of adhesion profiles generated using this platform differentially segregated metastatic cell lines from primary tumor lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8, or laminin. These interactions appear to be mediated in part by 31 integrin both in vitro and in vivo. We show that these galectins also correlate with human disease at both a transcriptional and histological level. Thus, our in vitro platform allowed us to interrogate the interactions of metastatic cells with their surrounding environment, and identified ECM and integrin interactions that could lead to therapeutic targets for metastasis prevention.
A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis.
Specimen part
View Samples