This SuperSeries is composed of the SubSeries listed below.
Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b.
Specimen part, Treatment
View SamplesmRNA expression data from mammary tumors extracted 30 days after orthotopic injection of miR-290-expressing and negative control 6dt1 cells into female FVB/N mice.
Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b.
Specimen part, Treatment
View SamplesTo uncover the gene expression alterations that occur during lung cancer progression, we interrogated the gene expression state of neoplastic cells at different stages of malignant progression. We initiated tumors in KrasLSL-G12D/+;p53flox/flox;R26LSL-tdTomato (KPT) mice with a pool of barcoded lentiviral-Cre vectors and purified Tomatopositive cancer cells away from the diverse and variable stromal cell populations. Five to nine months after tumor initiation, cancer cells were isolated from individual primary tumors and metastases using fluorescence-activated cell sorting. Sequencing of the barcode region of the integrated lentiviral vectors established primary tumor-metastasis and metastasis-metastasis relationships. Tumor barcoding allowed us to unequivocally distinguish non-metastatic primary tumors (TnonMet) from those primary tumors that had seeded metastases (TMet). We profiled 10 TnonMet samples as well as TMet and metastasis (Met) samples representing 12 metastatic events. To examine additional earlier stages of lung cancer development, we also analyzed premalignant cells from hyperplasias that develop in KPT mice shortly after tumor initiation (KPT-Early; KPT-E), as well as tumors from KrasG12D;R26LSL-tdTomato (KT) mice which rarely gain metastatic ability Overall design: This study includes 52 samples: 3 KP late samples, 3KPT early samples,10 non-metastatic primary tumors, 9 metastatic primary tumors, and 27 metastasis in different organs. total RNA was isolated and prepared for sequencing using the Ovation® RNA-Seq system and Illumina TruSeq DNA kit (v2) to generate 100bp paired end reads. Reads were aligned to mm10.
Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis.
Subject
View SamplesDuring hematopoiesis, cells originating from the same stem cell reservoir differentiate into distinct cell types. The mechanisms enabling common progenitors to differentiate into distinct cell fates are not fully understood. Here, we identify chromatin-regulating and cell-fate-determining transcription factors (TF) governing dendritic cell (DC) development by annotating the enhancer and promoter landscapes of the DC lineage. Combining these analyses with detailed over-expression, knockdown and ChIP-Seq studies, we show that Irf8 functions as a plasmacytoid DC epigenetic and fate-determining TF, regulating massive, cell-specific chromatin changes in thousands of pDC enhancers. Importantly, Irf8 forms a negative feedback loop with Cebpb, a monocyte-derived DC epigenetic fate-determining TF. We show that using this circuit logic, differential activity of TF can stably define epigenetic and transcriptional states, regardless of the microenvironment. More broadly, our study proposes a general paradigm that allows closely related cells with a similar set of signal-dependent factors to generate differential and persistent enhancer landscapes. Overall design: Here analyzed 2 experiments, each one contains samples of moDC and pDC ex vivo cultured cells. The first experiment contains 32 samples of moDC and pDC following stimulation with various TLR stimulators. The second experiment contains 8 samples of moDC and pDC following perturbations; Cebpb and Irf8 knock down or over expression.
A negative feedback loop of transcription factors specifies alternative dendritic cell chromatin States.
No sample metadata fields
View SamplesMonocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity. Overall design: Human monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) were isolated from 12 healthy volunteers based on MACS technology. Total RNA from monocyte subsets was isolated and same aliquots from each donor and monocyte subset were matched for SuperSAGE. Three SuperSAGE libraries (CD14++CD16-, CD14++CD16+ and CD14+CD16++) were generated.
SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset.
No sample metadata fields
View SamplesERG activity was blocked using YK-4-279 in three subcutaneously implanted ERG+ (LuCaP 23.1, 86.2, and 35) and one ERG- (LuCaP 96) PDX. Tumor volume (TV), body weight (BW), serum prostate specific antigen (PSA), and overall survival (OS) were compared to vehicle treated controls. Changes in gene expression were assessed by RNASeq and tissue microarrays were constructed to assess necrosis, proliferation, apoptosis, microvessel density, and ERG expression. Overall design: RNA sequencing of tumors from from 16 animals (2 control, 2 treated from each of four patient derived xenograft lines) using Illumina HiSeq 2500.
Inhibition of ERG Activity in Patient-derived Prostate Cancer Xenografts by YK-4-279.
Sex, Treatment, Subject
View SamplesMacrophages are hematopoietic cells critical for innate immune defense, but also control organ homeostasis in a tissue-specific manner. Tissue-resident macrophages, therefore, provide a well-defined model to study the impact of ontogeny and microenvironment on chromatin state. Here, we profile the dynamics of four histone modifications across seven tissue-resident macrophage populations, as well as monocytes and neutrophils. We identify 12,743 macrophage-specific enhancers and establish that tissue-resident macrophages have distinct enhancer landscapes. Our work suggests that a combination of tissue and lineage-specific transcription factors form the regulatory networks controlling chromatin specification in tissue-resident macrophages. The environment has the capacity to alter the chromatin landscape of macrophages derived from transplanted adult bone marrow in vivo and even differentiated macrophages are reprogramed when transferred into a new tissue. Altogether, these data provide a comprehensive view of macrophage regulation and highlight the importance of microenvironment along with pioneer factors in orchestrating macrophage identity and plasticity. Overall design: 7 tissue-resident macrophage populations were isolated, as well as monocytes and neutrophils, and transcriptome analysis was performed. Experiment was done in duplicates.
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment.
No sample metadata fields
View SamplesTo identify the CAR-, PXR- and PPAR-specific genome-wide expression changes, hepatocyte cultures from six individual donors were treated with the prototypical ligands for
Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.
Sex, Age
View SamplesGlobal analysis of gene expression in 10 day old brm-101 and syd-2 mutant seedlings compared to wild type Landsberg erecta seedlings.
Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED.
Age
View SamplesOocyte quality is a well- established determinant of embryonic fate. However, the molecular participants and biological markers that affect and predict adequate embryonic development are largely elusive. We have previously reported that oocyte- directed Connexin 43 (Cx43) depletion leads to embryo implantation defects, although both the morphology of the oocyte and processes presiding embryo implantation appear to undergo normally. In the context of previous data determining Cx43 indispensability to oocyte and embryonic development, we show here that the timing of Cx43 depletion from the oocyte and the ovarian follicle is crucial in determining the severity of subsequent embryonic defects. Specifically, we show that the implantation defects of blastocysts resulting from oocyte- directed Cx43- depleted follicles (depletion occurs at day 3 postnatal), is not due to maternal luteal insufficiency but rather depends solely on the defective blastocysts. Gene expression microarray analysis revealed global defects in the expression of ribosomal proteins, translation initiation factors and other genes associated with cellular biosynthetic and metabolic processes in these defective oocytes and specifically blastocysts. We therefore propose that timely expression of Cx43 in the oocyte and ovarian follicles is a major determinant of oocyte developmental competence, by determining the ability of the resulting blastocyst to facilitate biomass expansion and undergo adequate embryo implantation
Blastocyst implantation failure relates to impaired translational machinery gene expression.
Specimen part
View Samples