Context dependent molecular cues shape the formation of the cerebral vascular network and the function of the blood-brain barrier (BBB). The Wnt/ß-catenin pathway is orchestrating CNS vascular development, but downstream mediators have not been characterized. Here we generated an endothelial cell-specific R26-Axin1 overexpression (AOE) mouse model to inhibit Wnt/ß-catenin signaling. In AOE mice we discovered that blockade of Wnt/ß-catenin pathway leads to premature regression and remodeling without compromising BBB integrity. Importantly, by comparing transcriptomes of endothelial cells from wildtype and AOE mice, we identified ADAMTSL2 as a novel Wnt/ß-catenin-induced, secreted factor, important for stabilizing the BBB during development. Zebrafish loss-of-function and gain-of-function models, further demonstrated that ADAMTSL2 is crucial for normal vascular development and could rescue vascular phenotypes in AOE zebrafish brains. In conclusion, the studies presented here reveal a hitherto unrecognized role of ADAMTSL2 as an endothelial cell-specific mediator of Wnt/ß-catenin signaling during CNS vascular development and BBB-formation. Overall design: Examination of expression changes in mouse brain endothelial cells when overexpressing Axin1
Disruption of the Extracellular Matrix Progressively Impairs Central Nervous System Vascular Maturation Downstream of β-Catenin Signaling.
No sample metadata fields
View SamplesMethylene diphenyl diisocyanate is a chemical known to cause asthma. The present study uses mice to investigate exposure-induced changes in lung gene expression and effects of a chloride channel inhibitor
Analysis of Lung Gene Expression Reveals a Role for Cl<sup>-</sup> Channels in Diisocyanate-induced Airway Eosinophilia in a Mouse Model of Asthma Pathology.
Sex
View SamplesA split-split-plot design with 144 experimental units (3 replications x 4 genotypes x 6 time points x 2 treatment types) was used to profile barley plants containing variants of Mla1 and Mla6 powdery mildew resistance genes in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6). Barley leaves were harvested from inoculated and non-inoculated plants at 6 time points (0,8,16,20,24 and 32 hrs) after Bgh inoculation. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Rico Caldo. The equivalent experiment is BB10 at PLEXdb.]
Blufensin1 negatively impacts basal defense in response to barley powdery mildew.
Specimen part, Time
View SamplesA large-scale parallel expression analysis was conducted to elucidate Mla-specified responses to powdery mildew infection using 22K Barley1 GeneChip probe arrays. Our goal was to identify genes differentially expressed in incompatible (resistant) vs. compatible (susceptible) and Mla-specified Rar1-dependent vs. -independent interactions. A split-split-plot design with 108 experimental units (3 replications x 2 isolates x 3 genotypes x 6 time points) was used to profile near-isogenic lines containing the Mla1, Mla6, and Mla13 resistance specificities in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6) and K1 (AvrMla1, AvrMla13). ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Rico Caldo. The equivalent experiment is BB4 at PLEXdb.]
Interaction-dependent gene expression in Mla-specified response to barley powdery mildew.
Specimen part, Time
View SamplesTime-course expression profiles of Bgh challenged barley cultivar C.I. 16151 (harboring the Mla6 powdery mildew resistance allele) and its fast-neutron-derived "Bgh-induced tip cell death1" mutant, bcd1, were compared using the 22K Barley1 GeneChip. Planting, stage of seedlings, harvesting, and experimental design were part of a larger experiment described by Caldo et al. (2004). PLEXdb BB4. Experiment Design: C.I. 16151 (wildtype) and bcd1 (mutant) were planted in separate 20 x 30-cm flats using sterilized potting soil. Each experimental flat consisted of six rows of 15 seedlings, with rows randomly assigned to one of six harvest time points (0, 8, 16, 20, 24, and 32 hai). Seedlings grown to the 1st leaf stage with 2nd leaf unfolded were inoculated with a high density of fresh conidiospores (84 +/- 19 spores/mm2). Groups of flats were placed at 18C (8-hour darkness, 16-hour light) in separate controlled growth chambers corresponding to the Bgh isolates. Rows of plants were harvested at each assigned time points and snap frozen in liquid nitrogen. The entire experiment was repeated three times in a standard split-split-plot design with 72 experimental units (2 genotypes x 2 pathogen isolates x 6 time points x 3 replications). Treatment Description: The samples constituted pairwise combinations of the the cultivar C.I. 16151(containing the Mla6 resistance allele), and its fast-neutron-derived "Bgh-induced tip cell death1" mutant, bcd1 with the two Bgh (Blumeria graminis f. sp. hordei) isolates, 5874 (AvrMla6, AvrMla1) and K1 (AvrMla13, AvrMla1). For each replication, individual genotypes were planted in separate 20 x 30 cm flats using sterilized potting soil. Each experimental flat consisted of six rows of 15 seedlings, with rows randomly assigned to one of six harvest times (0, 8, 16, 20, 24, and 32 hai). Seedlings were grown to the 2nd-leaf stage with 1st leaf unfolded, and inoculation was performed at 4 PM Central Standard Time by tipping the flats at 45oC and dusting the plants with a high density of fresh conidiospores [84 +/- 19 spores/mm2]. This procedure was repeated from the opposite angle to ensure that a high proportion of the cells are in contact with the fungus. This conidial density per unit leaf area routinely results in greater than 50% of epidermal cells that are successfully infected. Groups of flats were placed at 18oC (8 hours darkness, 16 hours light, 8 hours darkness) in separate controlled growth chambers corresponding to the Bgh isolate. Rows of plants were harvested at their assigned harvest times and flash-frozen in liquid nitrogen. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Roger P Wise. The equivalent experiment is BB46 at PLEXdb.]
Interaction-dependent gene expression in Mla-specified response to barley powdery mildew.
Age, Specimen part, Time
View SamplesBarley stripe mosaic virus-induced gene silencing (BSMV-VIGS) was used to identify significant new genes in the regulation of host innate immunity. This experiment was designed to uncover significant changes in Bln1 (Contig12219_at)-silenced plants relative to empty vector and buffer treated controls. Five independent biological replications of a split-plot experimental design were conducted with replications as blocks, treatment with Blumeria graminis f. sp. hordei (Bgh) as the whole-plot factor, and all combinations of genotype (Mla13 and Mla9) and VIGS treatment [Buffer control (mock), BSMV:00 (empty vector), and BSMV:Bln1248] as the split-plot factor for a total of 60 GeneChip hybridizations. Ten seedlings were used as a split-plot experimental unit for each combination of replication, Bgh treatment, genotype, and VIGS treatment. Plants were grown in a controlled 20C glasshouse prior to VIGS treatment. Twelve days after VIGS treatment, half of the plants in each replication were challenged with the compatible Bgh isolate 5874. Top halves of 5 of the 10 seedling third leaves (about 10 cm) from each split-plot experimental unit were harvested into liquid N2 at 32 hours after inoculation (HAI) - the timepoint with the highest differential Bln1 transcript accumulation (Meng et al. 2009), and after initial establishment of the perihaustorial interface (Caldo et al. 2004). The remaining 5 leaves were used to record infection phenotype 7 days later. RNA was isolated for GeneChip hybridization from the 32-HAI samples. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Yan Meng. The equivalent experiment is BB101 at PLEXdb.]
Blufensin1 negatively impacts basal defense in response to barley powdery mildew.
Age, Specimen part
View SamplesA parallel expression profiling of wild-type and loss-of-function mutants of Mla6 and Mla1 powdery mildew resistance alleles was conducted using Barley1 GeneChip. Barley plants were inoculated with powdery mildew isolate 5874 and first leaves were harvested at 6 time points after pathogen inoculation. This experiment was conducted in split-split-plot experimental design with 3 replications.
Blufensin1 negatively impacts basal defense in response to barley powdery mildew.
Age, Specimen part, Time
View SamplesA large-scale parallel expression analysis was conducted to elucidate Mla-specified responses to powdery mildew infection using 22K Barley1 GeneChip probe arrays. Our goal was to identify genes differentially expressed in incompatible (resistant) vs. compatible (susceptible) and Mla-specified Rar1-dependent vs. -independent interactions. A split-split-plot design with 108 experimental units (3 replications x 2 isolates x 3 genotypes x 6 time points) was used to profile near-isogenic lines containing the Mla1, Mla6, and Mla13 resistance specificities in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6) and K1 (AvrMla1, AvrMla13).
Interaction-dependent gene expression in Mla-specified response to barley powdery mildew.
Age, Specimen part, Disease, Disease stage, Cell line, Time
View SamplesA large-scale time course expression profiling of wild type (Mla12/Rar1/Rom1) and mutants (mla12-M66, M82 (rar1-1), M100 (rar1-2) and rom1) of barley cultivar Sultan 5 was conducted to understand the molecular mechanisms of delayed powdery mildew resistance. Barley plants were inoculated with powdery mildew pathogen isolate 5874. First leaves of inoculated and non-inoculated plants were harvested at six time points after pathogen inoculation. The experiment was laid out in split-split-plot design with 180 experimental units (3 replications x 2 treatments (inoculated and non-inoculated) x 5 genotypes x 6 time points).
Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles.
Age, Specimen part, Time
View SamplesThe photosynthetic organs of the barley spike (lemma, palea and awn) are resistant to drought. This is a beneficial trait because they can sustain grain-filling when drought occurs at the reproductive stage. There is little information about gene expression in the spike organs under drought conditions. In this study, we compared gene expression in drought-stressed lemma, palea, awn and seed at the grain-filling stage using the Barley1 Genome Array in order to identify drought-regulated organ-specific genes.
Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed.
Specimen part, Treatment
View Samples