Cancer cells interact with surrounding stromal fibroblasts during tumorigenesis, but the complex molecular rules that govern these interactions remain poorly understood, thus hindering the development of therapeutic strategies to target cancer stroma. We have taken a mathematical approach to begin defining these rules by performing large-scale quantitative analysis of fibroblast effects on cancer cell proliferation across more than four hundred heterotypic cell line pairings. Systems-level modeling of this complex dataset using singular value decomposition revealed that normal tissue fibroblasts variably express at least two functionally distinct activities, one which reflects transcriptional programs associated with activated mesenchyme, that act either coordinately or at cross-purposes to modulate cancer cell proliferation. To gain insight into the molecular identity of these fibroblast activities, we isolated RNA from 36 human skin and lung fibroblast cell line monocultures from Coriell Repositories or ATCC and performed microarray-based gene expression profiling using Affymetrix gene chips.
Systems-level modeling of cancer-fibroblast interaction.
Sex, Age, Race
View SamplesEmergence of antiestrogen-resistant cells in MCF-7 cells during suppression of estrogen signaling is a widely accepted model of acquired breast cancer resistance to endocrine therapy. To obtain insight into the genomic basis of endocrine therapy resistance, we characterized MCF-7 monoclonal sublines that survived 21-day exposure to tamoxifen (T-series sublines) or fulvestrant (F-series sublines) and sublines unselected by drugs (U-series). All T/F-sublines were resistant to the cytocidal effects of both tamoxifen and fulvestrant. However, their responses to the cytostatic effects of fulvestrant varied greatly, and their remarkably diversified morphology showed no correlation with drug resistance. mRNA expression profiles of the U-sublines differed significantly from those of the T/F-sublines, whose transcriptomal responsiveness to fulvestrant was largely lost. A set of genes strongly expressed in the U-sublines successfully predicted metastasis-free survival of breast cancer patients. Most T/F-sublines shared highly homogeneous genomic DNA aberration patterns that were distinct from those of the U-sublines. Genomic DNA of the U-sublines harbored many aberrations that were not found in the T/F-sublines. These results suggest that the T/F-sublines are derived from a common monoclonal progenitor that lost transcriptomal responsiveness to antiestrogens as a consequence of genetic abnormalities many population doublings ago, not from the antiestrogen-sensitive cells in the same culture during the exposure to antiestrogens. Thus, the apparent acquisition of antiestrogen resistance by MCF-7 cells reflects selection of preexisting drug-resistant subpopulations without involving changes in individual cells. Our results suggest the importance of clonal selection in endocrine therapy resistance of breast cancer.
Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor.
Specimen part, Cell line, Treatment
View SamplesHuman tumors often contain slowly proliferating cancer cells that resist treatment but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating G0-like progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.
Asymmetric cancer cell division regulated by AKT.
Specimen part, Cell line
View SamplesMultiple gene expression studies have demonstrated that breast cancer biological diversity is associated with distinct transcriptional programs. Transcription factors, because of their unique ability to coordinate the expression of multiple genes, are speculated to play a role in generating phenotypic plasticity associated with cancer progression including acquired drug resistance. Combinatorial libraries of artificial zinc-finger transcription factors (ZF-TFs) provide a robust means for inducing and understanding various functional components of the cancer phenotype. Herein, we utilized combinatorial ZF-TF library technology to better understand how breast cancer cells acquire resistance to a fulvestrant, a clinically important anti-endocrine therapeutic agent. We isolated six ZF-TF library members capable of inducing stable, long-term anti-endocrine drug-resistance in two independent estrogen receptor positive breast cancer cell lines. Comparative gene expression profile analysis of the ZF-TF-transduced breast cancer cell lines revealed a 72-gene cluster that constituted a common signature for the fulvestrant-resistance phenotype. Pathway enrichment-analysis of gene expression data revealed that the ZF-TF-induced fulvestrant resistance is associated with an estrogen receptor negative-like gene set and four unique myb-regulated gene sets. Furthermore, we identified a set of genes strongly expressed in the ZF-TF-induced fulvestrant-resistant cells that was correlated with a lower probability of distant metastasis-free or death-from-relapse-free survival of breast cancer patients.
Induction of stable drug resistance in human breast cancer cells using a combinatorial zinc finger transcription factor library.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MYC regulation of a "poor-prognosis" metastatic cancer cell state.
Specimen part, Cell line
View SamplesExpression data from ERBB2 over-expression and EGF stimulation in MCF10A cells
MYC regulation of a "poor-prognosis" metastatic cancer cell state.
Specimen part, Cell line
View SamplesExpression data from DHT stimulation vs. control in LNCaP cells
MYC regulation of a "poor-prognosis" metastatic cancer cell state.
Specimen part, Cell line
View SamplesTumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single cell RNA-sequencing in an orthotopic mouse prostate cancer model, we find upregulation of Prolactin receptor as cancer cells that have disseminated to the lung expand into micrometastases. Secretion of the ligand Prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E-2 (PGE-2). PGE-2 treatment of fibroblasts activates the nuclear orphan receptor NR4A (Nur77), with Prolactin as a major transcriptional target for the NR4A-Retinoid X receptor (RXR) heterodimer. Ectopic expression of Prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor Celecoxib abrogates Prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, Prolactin, and Prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine crosstalk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression. Overall design: Primary tumors were established by direct prostate inoculation into immunosuppressed NSG mice of CE1-4 prostate cancer cells, derived from tissue-specific inactivation of PTEN [Pubmed ID: 20631921]. These cells, which were GFP-luciferase tagged, are noteworthy in that they have preserved expression of the androgen receptor and epithelial markers and recapitulate biological features of human prostate cancer. Six weeks following intra-prostate inoculation, multiple single DTCs were identified microscopically within the lungs (394 cells/hpf), with a smaller number in liver (54 cells/hpf), brain (9 cells/hpf) and bone marrow (1 cell/hpf). To undertake RNA sequencing of single cells during progression from quiescent DTCs to proliferative lesions, we identified GFP-tagged single tumor cells from lung harvested at various intervals, analyzing these separately from microdissected multicellular lesions. Individual DTCs collected at 6-7 weeks (DTC-I; N=20) and at 9-11 weeks (DTC-II; N=55) were compared with single cells derived from the primary tumor (N=29), lung micro-metastases (N=33), and CTCs isolated by microfluidic capture from blood specimens (N=12) [Pubmed ID: 28181495].
COX-2 mediates tumor-stromal prolactin signaling to initiate tumorigenesis.
Disease, Subject
View SamplesTumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single cell RNA-sequencing in an orthotopic mouse prostate cancer model, we find upregulation of Prolactin receptor as cancer cells that have disseminated to the lung expand into micrometastases. Secretion of the ligand Prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E-2 (PGE-2). PGE-2 treatment of fibroblasts activates the nuclear orphan receptor NR4A (Nur77), with Prolactin as a major transcriptional target for the NR4A-Retinoid X receptor (RXR) heterodimer. Ectopic expression of Prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor Celecoxib abrogates Prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, Prolactin, and Prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine crosstalk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression. Overall design: We performed RNA-seq on the human dermal fibroblast cell line DF treated for six hours with PGE-2 or untreated.
COX-2 mediates tumor-stromal prolactin signaling to initiate tumorigenesis.
Specimen part, Cell line, Treatment, Subject
View SamplesTumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single cell RNA-sequencing in an orthotopic mouse prostate cancer model, we find upregulation of Prolactin receptor as cancer cells that have disseminated to the lung expand into micrometastases. Secretion of the ligand Prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E-2 (PGE-2). PGE-2 treatment of fibroblasts activates the nuclear orphan receptor NR4A (Nur77), with Prolactin as a major transcriptional target for the NR4A-Retinoid X receptor (RXR) heterodimer. Ectopic expression of Prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor Celecoxib abrogates Prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, Prolactin, and Prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine crosstalk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression. Overall design: We performed RNA-seq on the mouse prostate cancer cell line CE1-4 treated for six hours with PGE-2 or untreated.
COX-2 mediates tumor-stromal prolactin signaling to initiate tumorigenesis.
Specimen part, Cell line, Treatment, Subject
View Samples