This SuperSeries is composed of the SubSeries listed below.
Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence.
Specimen part, Disease
View SamplesIn this study, we developed an extensive dataset for a GBM case via the generation of polyclonal and monoclonal glioma stem cell lines from initial diagnosis, as well as from multiple sections of distant tumor locations of the deceased patients brain following tumor recurrence. Our analyses revealed the tissue-wide expansion of a new clone in the recurrent tumor as well as chromosome 7 gain and chromosome 10 loss as repeated genomic events in primary and recurrent disease. Moreover, chromosome 7 gain and chromosome 10 loss produced similar alterations in mRNA expression profiles in primary and recurrent tumors despite possessing other highly heterogeneous and divergent genomic alterations between the tumors. We identified ETV1 and CDK6 as putative candidate genes, and NFKB (complex), IL1B, IL6, Akt and VEGF as potential signaling regulators, as potentially central downstream effectors of chr7 gain and chr10 loss. Finally, the differences caused by the transcriptomic shift following gain of chromosome 7 and loss of chromosome 10 were consistent with those generally seen in GBM samples compared to normal brain in large-scale patient-tumor data sets.
Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence.
Specimen part, Disease
View SamplesGliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion.
Identification of molecular pathways facilitating glioma cell invasion in situ.
Specimen part
View SamplesZFHX4 and CHD4 suppression independently shift tumor initiating cells out of a stem like state and toward a differentiated morphology.
ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state.
Cell line
View SamplesTissue injury, such as incisional wound, results in an inflammatory response as well as acute to chronic mechanical and thermal pain. It is now understood that there is a strong contribution of these immune cells to the pain phenotype.
CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity.
Sex, Age
View SamplesWe have established that BMP6 is an important endogenous regulator of human osteoblast differentiation. Our preliminary experiment showed that 8 hour BMP6 treatment induced early osteoblast markers in hMSC.
GAGE: generally applicable gene set enrichment for pathway analysis.
No sample metadata fields
View SamplesThe transcriptional responses of human hosts towards influenza viral pathogens are important for understanding virus-mediated immunopathology. Despite great advances gained through studies using model organisms, the complete temporal host transcriptional responses in a natural human system are poorly understood. In a human challenge study using live influenza (H3N2/Wisconsin) viruses, we conducted a clinically uninformed (unsupervised) factor analysis on gene expression profiles and established an ab initio molecular signature that strongly correlates to symptomatic clinical disease. This is followed by the identification of 42 biomarkers whose expression patterns best differentiate early from late phases of infection. In parallel, a clinically informed (supervised) analysis revealed over-stimulation of multiple viral sensing pathways in symptomatic hosts and linked their temporal trajectory with development of diverse clinical signs and symptoms. The resultant inflammatory cytokine profiles were shown to contribute to the pathogenesis because their significant increase preceded disease manifestation by 36 hours. In subclinical asymptomatic hosts, we discovered strong transcriptional regulation of genes involved in inflammasome activation, genes encoding virus interacting proteins, and evidence of active anti-oxidant and cell-mediated innate immune response. Taken together, our findings offer insights into influenza virus-induced pathogenesis and provide a valuable tool for disease monitoring and management in natural environments.
Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection.
Specimen part
View SamplesAnalysis of genes and pathways related to psychomotor retardation symptoms in patients with major depressive disorder. Results indicate that psychomotor slowing is associated with enrichment of inflammatory and metabolic pathways in unmedicated patients with depression.
Protein and gene markers of metabolic dysfunction and inflammation together associate with functional connectivity in reward and motor circuits in depression.
Sex, Age, Specimen part, Race, Subject
View SamplesTissue-specific comparison of gene expression levels in T65H translocation mice, either with or without uniparental duplications of Chrs 7 & 11. Identification of highly differentially expressed transcripts.
Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies.
Specimen part
View SamplesThe root epidermis of Arabidopsis provides a simple and experimentally useful model for studying the molecular basis of cell fate and differentiation. The goal of this study was to define the transcript changes in the root epidermis of mutants associated with root epidermis cell specification, including mutants that lack a visible phenotypic alteration (try, egl3, myb23, and ttg2). Transcript levels were assessed by purifying populations of root epidermal cells using fluorescence-based cell-sorting with the WER::GFP transgene. These microarray results were used to compare the effects of single and double mutants on the gene regulatory network that controls root epidermal cell fate and differentiation in Arabidopsis.
Tissue-specific profiling reveals transcriptome alterations in Arabidopsis mutants lacking morphological phenotypes.
Specimen part
View Samples