refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 63 results
Sort by

Filters

Technology

Platform

accession-icon GSE92994
Critical role of the transcription factors IRF1 and BATF in preparing the chromatin landscape during Type 1 regulatory cell differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP095844
Critical role of the transcription factors IRF1 and BATF in preparing the chromatin landscape during Type 1 regulatory cell differentiation [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Type 1 regulatory T (Tr1) cells are induced by interleukin-27 (IL-27) and have critical roles in the control of autoimmunity and resolution of inflammation. Here, we show that the transcription factors IRF1 and BATF are induced early during treatment with IL-27 and are required for the differentiation and function of Tr1 cells in vitro and in vivo. Epigenetic and transcriptional analyses reveal that both transcription factors influence chromatin accessibility and expression of genes required for Tr1 cell function. IRF1 and BATF deficiencies uniquely alter the chromatin landscape, suggesting that these factors serve a pioneering function during Tr1 cell differentiation. Overall design: Transcriptinal analysis of IL27-induced of WT, Irf1 KO, and Batf KO cells

Publication Title

Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE92940
Expression data for wildtype CD4+ T cells cells differentiated in Tr1 conditions for 2 hours
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

Type 1 regulatory T (Tr1) cells are induced by the interleukin-27 (IL-27) and have critical roles in the control of autoimmunity and resolution of inflammation. Here, we show that the transcription factors IRF1 and BATF are induced early during treatment with IL-27 and are required for the differentiation and function of Tr1 cells in vitro and in vivo . Epigenetic and transcriptional analyses reveal that both transcription factors influence chromatin accessibility and expression of genes required for Tr1 cell function. IRF1 and BATF deficiencies uniquely alter the chromatin landscape, suggesting that these factors serve a pioneering function during Tr1 cell differentiation.

Publication Title

Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE48655
Expression data from growth restricted fetal rat pancreatic islets
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Intrauterine growth restriction is a common complication of pregnancy. We induce IUGR in rats by bilateral uterine artery ligation at e18 of a 23 day gestation.

Publication Title

Neutralizing Th2 inflammation in neonatal islets prevents β-cell failure in adult IUGR rats.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE9254
Normal human colorectal mucosa, cecum, ascending, transverse, sigmoid and rectum
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Normal human colorectal mucosa was sampled at points along the colon.

Publication Title

Map of differential transcript expression in the normal human large intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP064190
Chronic Activation of ?2 AMPK Induces Obesity and Reduces Beta Cell Function
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Despite significant advances in our understanding of the biology determining systemic energy homeostasis, the treatment of obesity remains a medical challenge. Activation of AMP-activated protein kinase (AMPK) has been proposed as an attractive strategy for the treatment of obesity and its complications. AMPK is a conserved, ubiquitously expressed, heterotrimeric serine/threonine kinase whose short-term activation has multiple beneficial metabolic effects. Whether these translate into long-term benefits for obesity and its complications is unknown. Here, we observe that mice with chronic AMPK activation, resulting from mutation of the AMPK ?2 subunit, exhibit ghrelin signalling-dependent hyperphagia, obesity and impaired pancreatic islet insulin secretion. Humans bearing the homologous mutation manifest a congruent phenotype. Our studies highlight that long-term AMPK activation can have adverse metabolic consequences with implications for pharmacological strategies seeking to chronically activate AMPK systemically to treat metabolic disease. Overall design: Transcriptomic profiling of the hypothalamic arcuate nucleus from AMPK ?2 R299Q knock-in mice

Publication Title

Chronic Activation of γ2 AMPK Induces Obesity and Reduces β Cell Function.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP173554
In vivo RNA editing of point mutations via RNA-guided adenosine deaminases
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We investigated the specificity profiles of a variety of RNA guided adenosine deaminases while exploring roles of NLS/NES and hyperactive mutants via analysis of the transcriptome-wide off-target A->G editing effected by these tools. To this end, HEK 293T cells were transfected with each construct and analyzed by RNA-seq. Untransfected cells were included as controls. From each sample, we collected ~40 million uniquely aligned sequencing reads. We then used Fisher's exact test to quantify significant changes in A->G editing yields, relative to untransfected cells, at each reference adenosine site having sufficient read coverage. The number of sites with at least one A->G editing event detected in any of the samples was computed. Overall design: Study of transcriptome wide A->G off-targets arising due to the overexpression of a variety of RNA guided adenosine deaminases.

Publication Title

In vivo RNA editing of point mutations via RNA-guided adenosine deaminases.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45050
Expression data from human hepatocellular carcinoma (HCC), Cirrhosis, and non-tumor liver tissues.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

There are significant differences in the expression of genes that regulate metabolic pathways in HCC as compared to Cirrhosis or non-tumor liver tissues. These charcteristic pathways can be exploited for metabolic imaging biomarkers of HCC.

Publication Title

The aspartate metabolism pathway is differentiable in human hepatocellular carcinoma: transcriptomics and (13) C-isotope based metabolomics.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP032743
Identification of transcripts altered upon LIN-41 knockdown in human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To identify transcripts altered upon LIN-41 knockdown, we transfected either a control siRNA or one of two different LIN-41 siRNAs into human embryonic stem cells and collected total RNA 72 hours after transfection. Overall design: We compared transcript levels between control siRNA or LIN-41 siRNA treated cells.

Publication Title

The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19793
MyD88-mediated signaling prevents development of adenocarcinomas of the colon via interleukin-18
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Inflammation has pleiotropic effects on carcinogenesis and tumor progression. Signaling through the adaptor protein MyD88 promotes carcinogenesis in several chemically induced cancer models. Interestingly, we observed a protective role for MyD88 in the development of AOM/DSS colitis-associated cancer. The inability of Myd88-/- mice to heal ulcers generated upon injury creates an inflammatory environment that increases the frequency of mutations and results in a dramatic increase in adenoma formation and cancer progression. Susceptibility to colitis development and enhanced polyp formation were also observed in Il18-/- mice upon AOM/DSS treatment, suggesting that the phenotype of MyD88 knockouts is in part due to their inability to signal through the IL-18 receptor. This study revealed a previously unknown level of complexity surrounding MyD88 activities downstream of different receptors that differentially impact tissue homeostasis and carcinogenesis.

Publication Title

MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact