refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1481 results
Sort by

Filters

Technology

Platform

accession-icon GSE27362
Expression data from parthenogenetic and WT iPS samples and their parental fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Three parthenogenetic induced pluripotent stem cell (PgHiPSCs) lines were generated from each of the ovarian teratoma cell lines (two distinct individuals). Two normal iPS cell lines were generated from normal fibroblasts. Three biological replicates of normal embryonic stem cells (H9, HESCs) were perfomed.

Publication Title

Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE48792
Expression data from WT and ELK-1 overexpressing stem cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Two ELK-1 overexpressing cells were generated from CSES7 cell line and compared to WT CSES7.

Publication Title

Human pluripotent stem cells with distinct X inactivation status show molecular and cellular differences controlled by the X-Linked ELK-1 gene.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE84887
Molecular Characterization of Down Syndrome Embryonic Stem Cells Reveals a Role for RUNX1 in Neural Differentiation
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Down syndrome (DS) is the leading genetic cause of mental retardation and is caused by a third copy of human chromosome 21. The different pathologies of DS involve many tissues with a distinct array of neural phenotypes. Here we characterize new embryonic stem cell lines with DS (DS-ESCs), and focus on the neural aspects of the diease. Our results show that neural progenitor cells (NPCs) differentiated from five independent DS-ESC lines display increased apoptosis and down-regulation of forehead developmental genes. Analysis of differentially expressed genes suggested RUNX1 as a key transcription regulator in DS-NPCs. Using genome editing we were able to disrupt all three copies of RUNX1 in DS-ESCs, leading to down-regulation of several RUNX1 target developmental genes accompanied by reduced apoptosis and neuron migration. Our work sheds new light on the role of RUNX1 and the importance of dosage balance in the development of neural phenotypes in DS.

Publication Title

Molecular Characterization of Down Syndrome Embryonic Stem Cells Reveals a Role for RUNX1 in Neural Differentiation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE56136
The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated patient-derived induced pluripotent stem cells (iPSCs) harboring distinct deletions in the affected region on chromosome 15. Studying PWS-iPSCs and human parthenogenetic iPSCs unexpectedly revealed substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we identified IPW, a long noncoding RNA in the critical region of the PWS locus, as a regulator of the DLK1-DIO3 region, as its over-expression in PWS and parthenogenetic iPSCs results in downregulation of the MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications, rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.

Publication Title

The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP066112
Derivation and differentiation of haploid human embryonic stem cells [RNA-Seq 2]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to insure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but as of yet not from humans. Here we analyzed a large collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics such as self-renewal capacity and a pluripotency-specific molecular signature. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Intriguingly, we found that a haploid genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics, development and evolution. Overall design: RNA sequencing analysis was performed on a total of 2 samples of in vitro fertilization (IVF) control embryonic stem cell lines.

Publication Title

Derivation and differentiation of haploid human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74805
Derivation and differentiation of haploid human embryonic stem cells [expression array]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to insure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but as of yet not from humans. Here we analyzed a large collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics such as self-renewal capacity and a pluripotency-specific molecular signature. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Intriguingly, we found that a haploid genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics, development and evolution.

Publication Title

Derivation and differentiation of haploid human embryonic stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37040
Expression data from human pluripotent stem cells and differentiated cells treated with pluripotent-specific inhibitors
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules, and identified 15 highly selective cytotoxic inhibitors of hPSCs (PluriSIns). Cellular and molecular analyses revealed that the most selective compound, PluriSIn #1, is a pluripotent-specific inhibitor of stearoyl-coA desaturase (SCD1), the key enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). SCD1 inhibition in hPSCs induced ER stress, protein synthesis attenuation, and apoptosis of these cells, revealing that MUFA biosynthesis is crucial for their survival. PluriSIn #1 was also cytotoxic toward the ICM cells of mouse embryos, indicating that the dependence on SCD1 is inherent to the pluripotent state. Finally, application of PluriSIn #1 prevented teratoma formation from tumorigenic undifferentiated cells. Our novel method to eliminate undifferentiated cells from culture should thus increase the safety of hPSC-based treatments.

Publication Title

Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP011546
Tracing pluripotency of human early embryos and embryonic stem cells by single cell RNA-seq
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Find the casual relationship between gene expression network and cellular phenotype at single cell resolution. We collected donated human pre-implatation embryos, and the embryonic stem cells derived from them, isolate individual cells, prepared single cell cDNAs, and sequenced them by HiSeq2000. Then we analyzed the expression of known RefSeq genes. Overall design: We get transcriptome of 124 individual cells from human pre-implantation embryos and human embryonic stem cells by applying single cell RNA-seq technique we recently developed[1][2][3][4]. We did in-depth bioinformatic analysis to these data and found very dynamic expression of protein-coding genes. [1] Tang, F. et al. (2010a) Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis. Cell Stem Cell 6, 468-478. [2] Tang, F. et al. (2010b) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protocols 5, 516-535. [3] Tang, F. et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Meth 6, 377-382. [4] Tang, F. et al. (2011) Development and applications of single-cell transcriptome analysis. Nat Meth 8, S6-S11.

Publication Title

Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP026144
Characterization of miRNomes in acute and chronic myeloid leukemia cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

An in-depth analysis of miRNomes in 3 human myeloid leukemia cell lines was carried out to comprehensively identify miRNAs that distinguish acute and chronic myeloid leukemias and relate to myeloid cell differentiation. Overall design: Characterization the miRNomes in 3 myeloid leukemia cell lines.

Publication Title

Characterization of miRNomes in acute and chronic myeloid leukemia cell lines.

Sample Metadata Fields

Specimen part, Disease, Cell line, Subject

View Samples
accession-icon GSE22242
Identification of an intermediate signature that marks the initial phases of colorectal adenoma-carcinoma transition
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The colorectal adenoma-carcinoma sequence describes the stepwise progression from normal to dysplastic epithelium and then to carcinoma; only a small proportion of colorectal adenoma (CRA) progresses to colorectal carcinoma (CRC). Presently, endoscopic intervention is used on patients with CRAs of high grade dysplasia, diameters > 1 cm, or villous components > 25% who are at higher risk than other CRA sufferers. During the process, biopsy samples were taken for conventional histological diagnosis, but poor pathomorphological sensitivity and specificity greatly limit the diagnostic accuracy. Unfortunately, there are no reliable molecular criteria available that can predict the potential development of CRA to CRC. In present study, we use microarrays to detail the global programme of gene expression underlying the gradual progress of colorectal adenoma-carcinoma sequence.

Publication Title

Identification of an intermediate signature that marks the initial phases of the colorectal adenoma-carcinoma transition.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact