refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 62 results
Sort by

Filters

Technology

Platform

accession-icon SRP067458
Rapid evolutionary adaptation to growth on an 'unfamiliar' carbon source
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 95 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cells constantly adapt to changes in their environment. In the majority of cases, the environment shifts between conditions that were previously encountered during the course of evolution, thus enabling evolutionary-programmed responses. In rare cases, however, cells may encounter a new environment to which a novel response is required. To characterize the first steps in adaptation to a novel condition, we studied budding yeast growth on xylulose, a sugar that is very rarely found in the wild. We previously reported that growth on xylulose induces the expression of amino-acid biosynthesis genes, in multiple natural yeast isolates. This induction occurs despite the presence of amino acids in the growth medium and is a unique response to xylulose, not triggered by any of the naturally available carbon sources tested. Propagating these strains for ~300 generations on xylulose significantly improved their growth rate. Notably, the most significant change in gene expression was the loss of amino acid biosynthesis gene induction. Furthermore, the reduction in amino-acid biosynthesis gene expression on xylulose was strongly correlated with the improvement in growth rate, suggesting that internal depletion of amino-acids presented the major bottleneck limiting growth in xylulose. We discuss the possible implications of our results for explaining how cells maintain the balance between supply and demand of amino acids during growth in evolutionary 'familiar' vs. 'novel' conditions. Overall design: mRNA profiles of 12 wt S. cerevisiae strains grown on either YPD or YP-xylulose, before and after 300 generations evolution on YP-xylulose

Publication Title

Rapid evolutionary adaptation to growth on an 'unfamiliar' carbon source.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE5078
Hippocampal transcript profile in young and middle-aged mice
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We carried out a global survey of age-related changes in mRNA levels in the C57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged mice displayed a mild but specific deficit in spatial memory in the Morris water maze.

Publication Title

Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE40817
Expression data from S. cerevisiae after evolution under diverse conditions
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

We conducted a set of lab-evolution experiments in yeast and followed the long-term dynamics of aneuploidy under diverse conditions including heat shock and high PH.

Publication Title

Chromosomal duplication is a transient evolutionary solution to stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP074596
RNAseq of microglia from Rab7 Mutants & Control and Wild-Type mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We purified by magnet assisted cell sorting microglial cells from brains of adult Rab7 null mutant, aged mice and respective controls, isolated total RNA and performed RNAseq to determine the transciptome profiles. Overall design: Examination of transcriptomes of Rab7 null mutants and control (2 replicates each) and aged mice and young controls (3 replicates each)

Publication Title

Age-related myelin degradation burdens the clearance function of microglia during aging.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE56444
Macrophage-restricted Interleukin-10 receptor-, but not IL-10 deficiency causes severe spontaneous colitis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Interleukin-10 (IL-10) is a pleiotropic anti-inflammatory cytokine produced and sensed by most hematopoietic cells. Genome wide association studies and experimental animal models point at a central role of the IL-10 axis in Inflammatory Bowel Diseases. Here we investigated the importance of intestinal macrophage production of IL-10 and their IL-10 exposure, as well as the existence of an IL-10-based autocrine regulatory loop in the gut. Specifically, we generated mice harboring IL-10 or IL-10 receptor (IL-10R) mutations in intestinal lamina propria-resident chemokine receptor CX3CR1hi-expressingmacrophages. We found macrophage-derived IL-10 dispensable for gut homeostasis and maintenance of colonic T regulatory cells. In contrast, loss of IL-10 receptor expression impaired the critical conditioning of these monocyte-derived macrophages, but resulted in spontaneous development of severe colitis. Collectively, our results highlight IL-10 as a critical homeostatic macrophage-conditioning factor in the colon and define intestinal CX3CR1hi macrophages as a decisive factor that determines gut health or inflammation.

Publication Title

Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE42325
Expression data from in vitro derived dendritic cells generated in the presence of FLT3-L from wt and miR-142-/- BM cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

2 types of dendritic cells (DCs) can be generated in vitro in the presence of Flt3-L: CD4+ equivalent CD24- DCs and CD8+ equivalent CD24+ DCs. miR-142-/- mice show a severe defect in the generation of CD4+ equivalent CD24- DCs. To understand the underlying mechanism, RNA expression was analyzed by Affymetrix microarray from the 2 in vitro subtypes of DCs derived from miR-142+/+ and miR-142-/- bone marrow cells.

Publication Title

Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE3268
Squamous Lung Cancer, Paired Samples
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Gene expression profile of squamous lung cancer cells are used to identify genes that are differentially regulated.

Publication Title

Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP047289
Dosage compensation can buffer copy-number variation in wild yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 59 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 2500

Description

We show that aneuploidy is common in wild isolates of yeast, which are inherently tolerant to chromosome amplification and down-regulate expression at 40% of amplified genes.  To dissect the mechanism of this dosage response, we generated isogenic strain panels in which diploid cells carried either two, three, or four copies of the affected chromosomes.  Using a mixture of linear regression (MLR) model to classify genes, we find that expression is actively down regulated in proportion to increased gene copy at up to 30% of genes. Genes subject to dosage control are under higher expression constraint – but show elevated rates of gene amplification – in wild populations, suggesting that dosage compensation buffers copy number variation (CNV) at toxic genes Overall design: RNA-seq and transcriptome analysis of S. cerevisiae natural isolates having aneuploidy. Technical triplicate was performed for isogenic diploid strains having 2, 3 and 4 copies of a given chromosome (strain panels), while technical duplicate or singulate was performed on all other aneuploids.

Publication Title

Dosage compensation can buffer copy-number variation in wild yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE4739
Temporal control of gene expression by ERK MAP kinase during cell cycle progression from G0/G1 to S phase
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The ERK family of MAP kinase plays a critical role in growth factor-stimulated cell cycle progression from G0/G1 to S phase. But, how sustained activation of ERK promotes G1 progression has remained unclear. Here, our systematic analysis on the temporal program of ERK-dependent gene expression shows that sustained activation of ERK is required for induction and maintenance of the decreased expression levels of a set of genes. Moreover, our cell biological analysis reveals that these ERK-dependent downregulated genes have the ability to block S phase entry. Cessation of ERK activation at mid or late G1 leads to a rapid increase of these anti-proliferative genes and results in the inhibition of S phase entry. These findings uncover an important mechanism by which the duration of ERK activation regulates cell cycle progression through dynamic changes in gene expression, and identify novel ERK target genes crucial for the regulation of cell cycle progression.

Publication Title

Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34681
Effects of Ars2 or DGCR8 siRNA on gene and microRNA expression
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ars2 promotes proper replication-dependent histone mRNA 3' end formation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact