Background: The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling. Methods: The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG_U95Av2 high-density oligonucleotide arrays. Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, MMP-1 encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). The 20 patients were then grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, GLUT3, HSAL2, and PACE4, were selected for their potential biological significance in a larger cohort of 49 patients by quantitative real-time RT-PCR. Results: Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of GLUT3, HSAL2 and PACE4, respectively. Univariate analyses demonstrated that GLUT3 over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). HSAL2 was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.0467). In survival studies, only GLUT3 showed a prognostic value with disease-specific (P=0.049), relapse-free (P-0.0042) and overall survival (P=0.003). PACE4 mRNA expression failed to show correlation with any of the relevant parameters. Conclusions: The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.
Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis.
Specimen part
View SamplesGene expression profile of squamous lung cancer cells are used to identify genes that are differentially regulated.
Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues.
No sample metadata fields
View SamplesWe found that CFIm68, a mRNA cleavage and polyadenylation factor implicated for alternative polyadenylation site choice, was co-purified with Thoc5, a component of human THO/TREX. Microarray analysis using human HeLa cells reveals knockdown of Thoc5 affects the expression of a subset of non-heat shock genes. Notably, depletion of Thoc5 attenuated the expression of the mRNAs polyadenylated at distal, but not proximal, polyadenylation sites, which phenocopied the depletion of CFIm68.
Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I.
Cell line, Treatment
View SamplesBackground and Aims: Recent identification of intracellular DNA sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and autoimmunity suggests a role for these processes in liver pathology. The presence of these pathways in the liver and their role in HBV infection is unknown. Methods: In order to characterize the role of DNA sensing pathways in the liver, we utilized in vitro models. Microarray was performed on DNA treated and HBV infected hepatoma primary human hepatocytes. Results: Here we show that HBV infection and foreign DNA results in a significant innate immune response characterized by the production of inflammatory chemokines.
Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB.
Specimen part, Treatment
View SamplesAnalysis of gene expressions in human microvascular endothelial cells (HMVEC)s following co-cultured with mouse dorsal root ganglion cells. Results provide insight into a role for responses of neurovascular interaction in endothelial cell in angiogenesis and vascular remodeling.
JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin.
Specimen part
View SamplesAnalysis of gene expression in immortalized human microvascular endothelial cells (TIME cells) following forced expression of the JunB. Results provide insight into a role for the JunB signaling pathway in endothelial cell.
JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.
Sex, Specimen part
View SamplesTo identify genes expressed predominantly in the ventral skin epidermal basal cells of pregnant mice, we performed DNA microarray analysis by using FACS-purified epidermal basal cells from ventral skin at 0 and 16 dpc, and dorsal skin at 16 dpc.
Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.
Sex, Specimen part
View SamplesTo identify genes expressed predominantly in the ventral skin dermis of pregnant mice, we performed DNA microarray analysis by using isolated dermal tissues from ventral skin at 0 and 15 dpc, PP2-injected ventral skin at 15 dpc, and dorsal skin at 15 dpc.
Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.
Sex, Specimen part
View SamplesTo understand the molecular mechanism by which regulate skeletal development, we attempted to identify transcription factors that were highly expressed in developing cartilage during the embryonic stage.
The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification.
Specimen part
View Samples