refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 266 results
Sort by

Filters

Technology

Platform

accession-icon GSE16761
Expression data from activated bone marrow-derived dendritic cells (BMDCs)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

genes regualted by LPS or LPS+cAMP stimulation in BMDCs

Publication Title

Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22434
Expression data from Evi1-transduced primary bone marrow cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Evi1 is essential for proliferation of hematopoietic stem cells and implicated in the development of myeloid disorders. Particularly, high Evi1 expression defines one of the largest clusters in acute myeloid leukemia and is significantly associated with extremely poor prognosis. Improvement of the therapeutic outcome of leukemia with activated Evi1 is one of the most challenging issues. However, mechanistic basis of Evi1-mediated leukemogenesis has not been fully elucidated. Here we show that Evi1 directly represses PTEN transcription in the murine bone marrow, which leads to activation of AKT/mTOR signaling. In a murine bone marrow transplantation model, Evi1 leukemia showed remarkable sensitivity to an mTOR inihibitor rapamycin. Furthermore, we found that Evi1 binds to several polycomb group proteins and recruits polycomb repressive complexes for PTEN downregulation, which reveals a novel epigenetic mechanism of AKT/mTOR activation in leukemia. Expression analyses and chromatin immunoprecipitation assays using human samples indicate that our findings in mice models are recapitulated in human leukemic cells. Dependence of Evi1-expressing leukemic cells on AKT/mTOR signaling provides the first example of targeted therapeutic modalities that suppress the leukemogenic activity of Evi1. The PTEN/AKT/mTOR signaling pathway and the Evi1-polycomb interaction can be promising therapeutic targets for leukemia with activated Evi1.

Publication Title

Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP062555
Global analysis of pre-mRNA subcellular localization upon splicing inhibition by spliceostatin A
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA-Seq analysis of SSA treated cells Overall design: HeLa cells, nuclear and cytoplasmic fractions, treated with SSA or MeOH

Publication Title

Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17400
Dynamic Innate Immune Responses of Human Bronchial Epithelial Cells against SARS-CoV and DOHV infection
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection causes an immune-mediated disease. We have recently shown that SARS-CoV-induced epithelial Calu-3 cytokines could exacerbate and dampen host inflammatory and T cell responses, respectively, through modulating the functions of macrophages and dendritic cells, thereby suggesting that not only are lung epithelial cells the primary cells of SARS-CoV infection, but they also involve in initiating and orchestrating the host innate and adaptive immunity. Comprehensive evaluation of the complex epithelial signaling to SARS-CoV is, thus, crucial for paving the way to better understand SARS pathogenesis and develop the innovative therapeutics against SARS. Here, based on the microarray-based functional genomics, we reported that 2B4 cells, a clonal derivative of Calu-3 cells, elicited a temporal and spatial activation of nuclear factor (NF)kappaB, activator protein (AP)-1 (ATF2/c-Jun), and interferon regulatory factor (IRF)-3/-7 at 12-, 24-, and 48-hrs post infection (p.i.), respectively, resulting in the activation of many antiviral genes, including interferon (IFN)-, -s, SARS-related inflammatory mediators, and various IFN-stimulated genes (ISGs). While elevated responses of IFN- and IFN-s were not detected until 48-hrs p.i., as a consequence of a delayed IRF-3/-7 activation, we showed, for the first time, that both types of IFNs exerted previously under-described non-redundant, complementary, and/or synergistic effects on the epithelial defense against SARS-CoV. Collectively, our results highlight the molecular mechanisms of the sequential activation of virus- and IFN-dependent signaling of lung epithelial cells against SARS-CoV and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.

Publication Title

Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE93696
Gene expression in microvascular endothelial cells co-cultured with dorsal root ganglion cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of gene expressions in human microvascular endothelial cells (HMVEC)s following co-cultured with mouse dorsal root ganglion cells. Results provide insight into a role for responses of neurovascular interaction in endothelial cell in angiogenesis and vascular remodeling.

Publication Title

JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93616
JunB overexpression effect on microvascular endothelial cell culture
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of gene expression in immortalized human microvascular endothelial cells (TIME cells) following forced expression of the JunB. Results provide insight into a role for the JunB signaling pathway in endothelial cell.

Publication Title

JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84844
Multi-omics profiling of patients with primary Sjogren's syndrome
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multi-omics study was conducted to elucidate the crucial molecular mechanisms of primary Sjgrens syndrome (SS) pathology. We generated multiple data set from well-defined patients with SS, which includes whole-blood transcriptomes, serum proteomes and peripheral immunophenotyping. Based on our newly generated data, we performed an extensive bioinformatic investigation. Our integrative analysis identified SS gene signatures (SGS) dysregulated in widespread omics layers, including epigenomes, mRNAs and proteins. SGS predominantly involved the interferon signature and ADAMs substrates. Besides, SGS was significantly overlapped with SS-causing genes indicated by a genome-wide association study and expression trait loci analyses. Combining the molecular signatures with immunophenotypic profiles revealed that cytotoxic CD8 T cells were associated with SGS. Further, we observed the activation of SGS in cytotoxic CD8 T cells isolated from patients with SS. Our multi-omics investigation identified gene signatures deeply associated with SS pathology and showed the involvement of cytotoxic CD8 T cells. These integrative relations across multiple layers will facilitate our understanding of SS at the system level.

Publication Title

Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren's syndrome.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE93683
CD8 T-cells from pSS patients and human healthy volunteers
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multi-omics study was conducted to elucidate the crucial molecular mechanisms of primary Sjgrens syndrome (SS) pathology. We generated multiple data set from well-defined patients with SS, which includes whole-blood transcriptomes, serum proteomes and peripheral immunophenotyping. Based on our newly generated data, we performed an extensive bioinformatic investigation. Our integrative analysis identified SS gene signatures (SGS) dysregulated in widespread omics layers, including epigenomes, mRNAs and proteins. SGS predominantly involved the interferon signature and ADAMs substrates. Besides, SGS was significantly overlapped with SS-causing genes indicated by a genome-wide association study and expression trait loci analyses. Combining the molecular signatures with immunophenotypic profiles revealed that cytotoxic CD8 T cells were associated with SGS. Further, we observed the activation of SGS in cytotoxic CD8 T cells isolated from patients with SS. Our multi-omics investigation identified gene signatures deeply associated with SS pathology and showed the involvement of cytotoxic CD8 T cells. These integrative relations across multiple layers will facilitate our understanding of SS at the system level.

Publication Title

Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren's syndrome.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE94510
CD4 T-cells from pSS patients and human healthy volunteers
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multi-omics study was conducted to elucidate the crucial molecular mechanisms of primary Sjgrens syndrome (SS) pathology. We generated multiple data set from well-defined patients with SS, which includes whole-blood transcriptomes, serum proteomes and peripheral immunophenotyping. Based on our newly generated data, we performed an extensive bioinformatic investigation. Our integrative analysis identified SS gene signatures (SGS) dysregulated in widespread omics layers, including epigenomes, mRNAs and proteins. SGS predominantly involved the interferon signature and ADAMs substrates. Besides, SGS was significantly overlapped with SS-causing genes indicated by a genome-wide association study and expression trait loci analyses. Combining the molecular signatures with immunophenotypic profiles revealed that cytotoxic CD8 T cells were associated with SGS. Further, we observed the activation of SGS in cytotoxic CD8 T cells isolated from patients with SS. Our multi-omics investigation identified gene signatures deeply associated with SS pathology and showed the involvement of cytotoxic CD8 T cells. These integrative relations across multiple layers will facilitate our understanding of SS at the system level.

Publication Title

Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren's syndrome.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE93777
Multi-omics monitoring of drug response in rheumatoid arthritis.
  • organism-icon Homo sapiens
  • sample-icon 286 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact