Noncoding RNAs (ncRNAs) comprise an important class of natural regulators that mediate a vast array of biological processes, including the modulation of chromatin architecture. Moreover, artificial ncRNAs have revealed that the functional capabilities of RNA are extremely broad. To further investigate and harness these capabilities, we developed CRISPR-Display ("CRISP-Disp"), a targeted localization strategy that uses Cas9 to deploy large RNA cargos to specific DNA loci. We demonstrate that exogenous RNA domains can be functionally appended onto the CRISPR scaffold at multiple insertion points, allowing the construction of Cas9 complexes with RNAs nearing one kilobase in length, with structured RNAs, protein-binding cassettes, artificial aptamers and pools of random sequences. CRISP-Disp also allows the simultaneous multiplexing of disparate functions at multiple targets. We anticipate that this technology will provide a powerful method with which to ectopically localize functional RNAs and ribonuceloprotein complexes at specified genomic loci. Overall design: Whole cell poly(A) selected RNA seq, from HEK293FT cells bearing lentivirally-integrated Gaussia and Cypridina luciferase reporter loci. Cells were transiently transfected with dCas9~VP64 alone, or with dCas9~VP and one of several modified sgRNAs,each targeting the Gaussia reporter.
Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display.
No sample metadata fields
View SamplesThe retinal pigment epithelium (RPE) provides vital support to photoreceptor cells and its dysfunction is associated with the onset and progression of age-related macular degeneration (AMD). Surgical provision of RPE cells may ameliorate AMD and thus it would be valuable to develop sources of patient-matched RPE cells for this application of regenerative medicine. We describe here the generation of functional RPE-like cells from fibroblasts that represent an important step toward that goal. We identified candidate master transcriptional regulators of RPEs using a novel computational method and then used these regulators to guide exploration of the transcriptional regulatory circuitry of RPE cells and to reprogram human fibroblasts into RPE-like cells. The RPE-like cells share key features with RPEs derived from healthy individuals, including morphology, gene expression and function, and thus represent a step toward the goal of generating patient-matched RPE cells for treatment of macular degeneration.
A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity.
Specimen part
View SamplesThe global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed -cell dysfunction in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet altered the expression of 211 pancreatic islet genes in adult female offspring (P < 0.001); genes belonged to 8 functional clusters, including calcium ion binding, primary metabolic processes and ATP binding, and organ/system development. Broader KEGG pathway analysis of 2014 genes differentially expressed at the P < 0.01 level further demonstrated involvement of insulin and calcium signaling, and MAPK pathways. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.
Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Clinical relevance of DNA microarray analyses using archival formalin-fixed paraffin-embedded breast cancer specimens.
Age, Specimen part, Disease stage
View SamplesGene expression from bone-marrow drived macrophages of WT and SREBP-1a deficient mice
Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a.
No sample metadata fields
View SamplesIn previous studies, it was observed that survivors who received stem cell transplantation and whole body irradiation showed development of NAFLD as a chronic effect.
Decreased Hepatic Lactotransferrin Induces Hepatic Steatosis in Chronic Non-Alcoholic Fatty Liver Disease Model.
Sex, Age, Specimen part
View SamplesAging has been shown to be under genetic control in C. elegans. We performed Affymetrix micorarray-based transcriptional profililng of wild type C. elegans strain Bristol N2 during aging to detect temporal changes in gene expression.
A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans.
Specimen part
View SamplesBackground
Expression quantitative trait loci mapping identifies new genetic models of glutathione S-transferase variation.
No sample metadata fields
View SamplesMacrophages are amongst the major targets of glucocorticoids (GC) as therapeutic anti-inflammatory agents. Here we show that GC treatment of mouse and human macrophages initiates a cascade of induced gene expression including many anti-inflammatory genes. Inducible binding of the glucocorticoid receptor (GR) was detected at candidate enhancers in the vicinity of induced genes in both species and this was strongly associated with canonical GR binding motifs. However, the sets of inducible genes, the candidate enhancers, and the GR motifs within them, were highly-divergent between the two species.
Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.
Sex, Age, Specimen part, Treatment, Time
View Samples