refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 322 results
Sort by

Filters

Technology

Platform

accession-icon GSE43863
Expression data from virus-specific mouse Th1 and Tfh CD4 T cell subsets after LCMV infection
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD4 T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for longlived antibody responses. However, it remains unclear whether there are CD4+ memory T cells committed to the Tfh lineage after antigen clearance.

Publication Title

Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE99451
De novo epigenetic programs inhibit PD-1 blockade-mediated T-cell rejuvenation
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE30962
Primary and secondary CD8 T cells during acute and chronic LCMV infection
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Understanding the response of memory CD8 T cells to persistent antigen re-stimulation and the role of CD4 T cell help is critical to the design of successful vaccines for chronic diseases. However, studies comparing the protective abilities and qualities of memory and nave cells have been mostly performed in acute infections, and little is known about their roles during chronic infections. Herein, we show that memory cells dominate over nave cells and are protective when present in large enough numbers to quickly reduce infection. In contrast, when infection is not rapidly reduced, memory cells are quickly lost, unlike nave cells. This loss of memory cells is due to (i) an early block in cell proliferation, (ii) selective regulation by the inhibitory receptor 2B4, and (iii) increased reliance on CD4 T cell help. These findings have important implications towards the design of T cell vaccines against chronic infections and tumors.

Publication Title

Tight regulation of memory CD8(+) T cells limits their effectiveness during sustained high viral load.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85555
Critical roles of mTORC1 and mTORC2 kinase signaling and glucose metabolism in follicular helper T cell differentiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

AbstractFollicular helper T (Tfh) cells are crucial for germinal center (GC) formation and humoral adaptive immunity. Mechanisms underlying Tfh cell differentiation in peripheral and mucosal lymphoid organs are incompletely understood. We report here that mTOR kinase complexes 1 and 2 (mTORC1 and mTORC2) are essential for Tfh cell differentiation and GC reaction under steady state and after antigen immunization and viral infection. Loss of mTORC1 and mTORC2 in T cells exerted distinct effects on Tfh cell signature gene expression, whereas increased mTOR activity promoted Tfh responses. Deficiency of mTORC2 impaired CD4+ T cell accumulation and IgA production, and aberrantly induced Foxo1 transcription factor. Mechanistically, the costimulatory molecule ICOS activated mTORC1 and mTORC2 to drive glycolysis and lipogenesis, and Glut1-mediated glucose metabolism promoted Tfh cell responses. Altogether, mTOR acts as a central node in Tfh cells to link immune signals to glucose metabolism and transcriptional activity.

Publication Title

mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP071739
Changes in RNA expression in human oral cavity carcinoma cells as a result of LDB1 reduction
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The study was designed to identify differential expressed genes between human oral cavity carcinoma cell lines with and without LDBI knockout Overall design: Three parental human oral cavity carcinoma cell lines were used as control, LDB1 was knocked out in the three parent cell lines to create KO cell lines.

Publication Title

LIM-Only Protein 4 (LMO4) and LIM Domain Binding Protein 1 (LDB1) Promote Growth and Metastasis of Human Head and Neck Cancer (LMO4 and LDB1 in Head and Neck Cancer).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26347
Microarray analysis of total nave and YFV-17D specific CD8 T cells in humans
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD8 T cells play an importart role in adaptive immunity to intracellular pathogens. Nave CD8 T cells , that have not encountered antigen previously can be identified by virtue of their distinct phenotype. Upon antigenic encounter, they proliferate rapidly and undergo massive reprograming to differentiate to cytotoxic T lymphocytes. The yellow fever live virus vaccine (YF-17D) provides a model primary acute viral infection that can be used to follow this response.Here we characterize the resting, non-activated naive CD8 T cells in nine healthy adults and YF-specific CD8 T cells elicited in response to YF-17D vaccination from the same donors during the effector (2 weeks after vaccination) and memory (5-8 months later) stages.

Publication Title

Origin and differentiation of human memory CD8 T cells after vaccination.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP110991
RNA-seq analysis of YFV-17D specific and total naive CD8 T cells in humans
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

These 14 samples originate from peripheral blood mononuclear cells (PBMC) from donors at different times after they were vaccinated with the YF-17D vaccine. Overall design: 10,000 to 100,000 tetramer+ CD8 T cells specific for the NS4B-214 epitope in YFV-17D were purified by flow cytometry based sorting, from 8 vaccinees. Total Naive (CD45RA+ CD8+) CD8 t cells were also sorted from these donors. Subsets were defined based on the time after vaccination. The subsets (cell types) include: Naive CD8 T cells (n=6); YFV-specific Effector CD8 T cells (day 14 after vaccination, n =3) and YFV-specific long term memory CD8 T cells (4 to 12 years after vaccination, n=5).

Publication Title

Origin and differentiation of human memory CD8 T cells after vaccination.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP056086
CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Noncoding RNAs (ncRNAs) comprise an important class of natural regulators that mediate a vast array of biological processes, including the modulation of chromatin architecture. Moreover, artificial ncRNAs have revealed that the functional capabilities of RNA are extremely broad. To further investigate and harness these capabilities, we developed CRISPR-Display ("CRISP-Disp"), a targeted localization strategy that uses Cas9 to deploy large RNA cargos to specific DNA loci. We demonstrate that exogenous RNA domains can be functionally appended onto the CRISPR scaffold at multiple insertion points, allowing the construction of Cas9 complexes with RNAs nearing one kilobase in length, with structured RNAs, protein-binding cassettes, artificial aptamers and pools of random sequences. CRISP-Disp also allows the simultaneous multiplexing of disparate functions at multiple targets. We anticipate that this technology will provide a powerful method with which to ectopically localize functional RNAs and ribonuceloprotein complexes at specified genomic loci. Overall design: Whole cell poly(A) selected RNA seq, from HEK293FT cells bearing lentivirally-integrated Gaussia and Cypridina luciferase reporter loci. Cells were transiently transfected with dCas9~VP64 alone, or with dCas9~VP and one of several modified sgRNAs,each targeting the Gaussia reporter.

Publication Title

Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64264
Functional Retinal Pigment Epithelium-like Cells from Human Fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The retinal pigment epithelium (RPE) provides vital support to photoreceptor cells and its dysfunction is associated with the onset and progression of age-related macular degeneration (AMD). Surgical provision of RPE cells may ameliorate AMD and thus it would be valuable to develop sources of patient-matched RPE cells for this application of regenerative medicine. We describe here the generation of functional RPE-like cells from fibroblasts that represent an important step toward that goal. We identified candidate master transcriptional regulators of RPEs using a novel computational method and then used these regulators to guide exploration of the transcriptional regulatory circuitry of RPE cells and to reprogram human fibroblasts into RPE-like cells. The RPE-like cells share key features with RPEs derived from healthy individuals, including morphology, gene expression and function, and thus represent a step toward the goal of generating patient-matched RPE cells for treatment of macular degeneration.

Publication Title

A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33551
Effects of dietary obesity in fathers on gene expression of fat in the female offspring (mRNA data)
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

The global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed -cell dysfunction in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet altered the expression of 211 pancreatic islet genes in adult female offspring (P < 0.001); genes belonged to 8 functional clusters, including calcium ion binding, primary metabolic processes and ATP binding, and organ/system development. Broader KEGG pathway analysis of 2014 genes differentially expressed at the P < 0.01 level further demonstrated involvement of insulin and calcium signaling, and MAPK pathways. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.

Publication Title

Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact