Hepatocellular carcinoma (HCC) is the fifth most-common cancer worldwide causing nearly 600,000 deaths esch year. Approximately 80% of HCC develops on the background of cirrhosis.It is necessary to identify novel genes involved in HCC to implement new diagnostic and treatment options. However, the molecular pathogenesis of HCC largely remains unsolved. Only a few genetic alterations, namely those affecting p53, -catenin and p16INK4a have been implicated at moderate frequencies of these cancers. Early detection of HCC with appropriate treatment can decrease tumor-related deaths
Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.
Specimen part
View SamplesCellular senescence is a tumor suppressor mechanism, and immortalization facilitates neoplastic transformation. Both mechanisms may be highly relevant to hepatocellular carcinoma (HCC) development and its molecular heterogeneity. Cellular senescence appears to play a major role in liver diseases. Chronic liver diseases are associated with progressive telomere shortening leading senescence that is observed highly in cirrhosis, but also in some HCC. We previously described the generation of immortal and senescence-programmed clones from HCC-derived Huh7 cell line.
Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.
Specimen part, Cell line
View SamplesCyclins and cyclin-dependent kinases (CDKs) are hyperactivated in nearly all human tumor types. To identify new approaches for interfering with cyclins/CDKs, we systematically searched for microRNAs (miRNAs) regulating these proteins. We uncovered a group of miRNAs that target nearly all cyclins and CDKs, and demonstrated that these miRNAs are very effective in shutting off cancer cell expansion. By profiling the response of over 120 human cancer cell lines representing 12 tumor types to these cell-cycle-targeting miRNAs, we identified miRNAs particularly effective against triple-negative breast cancers and KRAS-mutated cancers. We also derived expression-based algorithm that predicts response of primary tumors to cell-cycle-targeting miRNAs. Using systemic administration of nanoparticle-formulated miRNAs, we halted tumor progression in seven mouse xenograft models, including three highly aggressive and treatment-refractory patient-derived tumors, without affecting normal tissues. Our results highlight the utility of using cell-cycle-targeting miRNAs for treatment of refractory cancer types. Overall design: RNA-seq for SW900 cells transfected with 25 nM of miR-193a-3p mimic or 25 nM of negative miRNA control (Negative control #2, Ambion).
Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.
No sample metadata fields
View SamplesCyclins and cyclin-dependent kinases (CDKs) are hyperactivated in nearly all human tumor types. To identify new approaches for interfering with cyclins/CDKs, we systematically searched for microRNAs (miRNAs) regulating these proteins. We uncovered a group of miRNAs that target nearly all cyclins and CDKs, and demonstrated that these miRNAs are very effective in shutting off cancer cell expansion. By profiling the response of over 120 human cancer cell lines representing 12 tumor types to these cell-cycle-targeting miRNAs, we identified miRNAs particularly effective against triple-negative breast cancers and KRAS-mutated cancers. We also derived expression-based algorithm that predicts response of primary tumors to cell-cycle-targeting miRNAs. Using systemic administration of nanoparticle-formulated miRNAs, we halted tumor progression in seven mouse xenograft models, including three highly aggressive and treatment-refractory patient-derived tumors, without affecting normal tissues. Our results highlight the utility of using cell-cycle-targeting miRNAs for treatment of refractory cancer types.
Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.
Specimen part
View SamplesImmune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection. However, despite heightened readiness to respond, memory cells exist in a functionally quiescent state. The paradigm is that memory cells remain inactive due to lack of TCR stimuli. Here we report a unique role of Tregs in orchestrating memory quiescence by inhibiting effector and proliferation programs through CTLA-4. Loss of Tregs resulted in activation of genome-wide transcriptional programs characteristic of potent effectors, and both developing and established memory quickly reverted to a terminally differentiated (KLRG-1hi/IL-7Rlo/GzmBhi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality and protective efficacy. CTLA-4, an inhibitory receptor overexpressed on Tregs, functionally replaced Tregs in trans to rescue Treg-less memory defects and restore homeostasis of secondary mediators as well. These studies present CD28-CTLA-4-CD80/CD86 axis as a novel target to potentially accelerate vaccine-induced immunity and improve T-cell memory quality in current cancer immunotherapies proposing transient Treg-depletion.
Quiescence of Memory CD8(+) T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4.
Specimen part
View SamplesThe mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well-understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA but not protein for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 and the 4E-T protein. When these repressive complexes are disrupted in RPs mid-neurogenesis by knocking down 4E-T or Pum2, this causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a 4E-T-Pum2 complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.
A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates Neuronal Specification.
Specimen part
View SamplesAdult neural stem cells (NSCs) derive from embryonic precursors, but little is known about how or when this occurs. We have addressed this issue using single cell RNAseq at multiple developmental timepoints to analyze the embryonic murine cortex, one source of adult forebrain NSCs. We computationally identify all major cortical cell types, including the embryonic radial precursors (RPs) that generate adult NSCs. We define the initial emergence of RPs from neuroepithelial stem cells at E11.5. We show that by E13.5 these RPs express a transcriptional identity that is maintained and reinforced throughout their transition to a non-proliferative state between E15.5 and E17.5. These slowly-proliferating late embryonic RPs share a core transcriptional phenotype with quiescent adult forebrain NSCs. Together, these findings support a model where cortical RPs maintain a core transcriptional identity from embryogenesis through to adulthood, and where the transition to a quiescent adult NSC occurs during late neurogenesis. Overall design: We applied the high-throughput single-cell mRNA sequencing technique, Drop-seq, to the embryonic mouse cortex. 2000-5000 single cells from wildtype CD1 embryos of gestational ages E11.5, E13.5, E15.5 and E17.5 were characterized.
Developmental Emergence of Adult Neural Stem Cells as Revealed by Single-Cell Transcriptional Profiling.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth.
Sex, Specimen part, Treatment
View SamplesPeripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth.
Sex, Specimen part, Treatment
View Samples