Investigation of differential gene expression array between primary and cultured human bone marrow MSCs as adherent cells (P0 and P3) or spheres (P0 and P3)
Human Primary Bone Marrow Mesenchymal Stromal Cells and Their in vitro Progenies Display Distinct Transcriptional Profile Signatures.
Specimen part
View SamplesOver activation of the aryl hydrocarbon receptor (AhR) by TCDD results ampng other phenotypes in severe thymic atrophy accompanied by immunosuppression. The link between thymic atrophy, skewed thymocyte differntiation and immunosuppression is still not fully resolved. This study investigates the TCDD elicted exprssion changes in the ET, cortical thymus epithelial cell line.
Promoter analysis of TCDD-inducible genes in a thymic epithelial cell line indicates the potential for cell-specific transcription factor crosstalk in the AhR response.
Treatment, Time
View SamplesDose-dependent femoral gene expression was examined following repeated exposure (every 4 days for 28 days) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These data were used to examine the effect of repeated TCDD exposure on gene expression in the femur of C57BL/6 male mice. Overall design: Three biological replicates for each dose (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30) of TCDD and sesame oil vehicle
2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesDose-dependent ileal gene expression was examined following repeated exposure (every 4 days for 28 days) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These data were used to examine the effect of repeated TCDD exposure on gene expression in the intestinal epithelium of C57BL/6 male mice. Overall design: Three biological replicates for each dose (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30) of TCDD and sesame oil vehicle
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited effects on bile acid homeostasis: Alterations in biosynthesis, enterohepatic circulation, and microbial metabolism.
Sex, Cell line, Treatment, Subject
View SamplesDose-dependent duodenal gene expression was examined following repeated exposure (every 4 days for 28 days) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These data were used to examine the effect of repeated TCDD exposure on gene expression in the intestinal epithelium of C57BL/6 male mice. Overall design: Three biological replicates for each dose (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30) of TCDD and sesame oil vehicle
Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesDose-dependent hepatic gene expression was examined following repeated exposure (every 4 days for 28 days) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These data were used to examine the effect of repeated TCDD exposure on gene expression in the liver of C57BL/6 male mice. Overall design: Three biological replicates for each dose (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30) of TCDD and sesame oil vehicle
Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesMicroarray data from G2-synchronized p53(+) and p53(-) fibroblasts before and after 3 h release from cell cycle blockade in the presence of 5 M sodium arsenite.
Exit from arsenite-induced mitotic arrest is p53 dependent.
No sample metadata fields
View SamplesDuring organogenesis of the intestine, reciprocal crosstalk between the endodermally-derived epithelium and the underlying mesenchyme is required for regional patterning and proper differentiation. Though both of these tissue layers participate in patterning, the mesenchyme is thought to play a prominant role in the determination of epithelial phenotype during development and in adult life. However, the molecular basis of this instructional dominance is unclear. In fact, surprisingly little is known about the cellular origins of many of the critical signaling molecules and the gene transcriptional events that they impact. Here, we profile genes that are expressed in separated mesenchymal and epithelial compartments of the perinatal mouse intestine. The data indicate that the vast majority of soluble modulators of signaling pathways such as Hedgehog, Bmp, Wnt, Fgf and Igf are expressed predominantly or exclusively by the mesenchyme, accounting for its ability to dominate instructional crosstalk. We also catalog the most highly enriched transcription factors in both compartments and find evidence for a major role for Hnf4alpha and Hnf4 gamma in the regulation of epithelial genes. Finally, we find that while epithelially enriched genes tend to be highly tissue-restricted in their expression, mesenchymally-enriched genes tend to be broadly expressed in multiple tissues. Thus, the unique tissue-specific signature that characterizes the intestinal epithelium is instructed and supported by a mesenchyme that itself expresses genes that are largely non-tissue specific.
Deconvoluting the intestine: molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk.
No sample metadata fields
View SamplesRecently, we identified a population of Oct4+Sca-1+Lin-CD45- very small embryonic-like stem-cells (VSELs) in adult tissues. Open chromatin structure of pluripotency genes and genomic imprinting-related epigenetic mechanisms maintain pluripotency and quiescence of VSELs, respectively. However, global transcriptome signature of this rare stem-cell population remains elusive. Here, we demonstrate by genomewide gene-expression analysis with a small number of highly purified murine bone-marrow (BM)-derived VSELs, that Oct4+ VSELs i) express a similar, yet nonidentical, transcriptome as embryonic stem-cells (ESCs), ii) up-regulate cell-cycle checkpoint genes, iii) down-regulate genes involved in protein turnover and mitogenic pathways, and iv) highly express Ezh2, a polycomb group protein.
Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state.
Age, Specimen part, Cell line
View SamplesEpithelial Hedgehog (Hh) ligands regulate several aspects of fetal intestinal organogenesis and emerging data implicate the Hh pathway in inflammatory signaling in adult colon. We investigated the effects of chronic Hh inhibition in vivo and profiled molecular pathways acutely modulated by Hh signaling in the intestinal mesenchyme.
Hedgehog is an anti-inflammatory epithelial signal for the intestinal lamina propria.
Specimen part
View Samples