4 Treatment groups:
Dysregulation of gene expression in primary neuron models of Huntington's disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry.
No sample metadata fields
View SamplesPrimary neuron model of Huntington's Disease. 2 treatment groups: A) Infected 4 weeks prior with TRE-Htt-N853-18Q-expressing recombinant lentivirus, B) Infected 4 weeks prior with TRE-Htt-N853-82Q-expressing recombinant lentivirus
Dysregulation of gene expression in primary neuron models of Huntington's disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease.
Sex, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults.
Sex, Specimen part
View SamplesWe compared PBMC genomic response to exercise in both early (EB) and late-pubertal boys (LB)
Brief bout of exercise alters gene expression in peripheral blood mononuclear cells of early- and late-pubertal males.
No sample metadata fields
View SamplesWe compared PBMC genomic response to exercise in both early (EG) and late-pubertal girls (LG)
A brief bout of exercise alters gene expression and distinct gene pathways in peripheral blood mononuclear cells of early- and late-pubertal females.
No sample metadata fields
View SamplesWe tested the hypothesis on the mechanisms responsible for the early control of NK cell function by identifying a discrete set of genes in circulating NK cells that were altered by exercise.
Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults.
Sex, Specimen part
View SamplesWe tested the hypothesis on the mechanisms responsible for the early control of monocytes function by identifying a discrete set of genes in circulating monocytes that were altered by exercise.
Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease.
Sex, Specimen part, Time
View SamplesRelatively brief bouts of exercise alter gene expression in peripheral blood mononuclear cells (PBMCs), but whether or not exercise changes gene expression in circulating neutrophils (whose numbers, like PBMCs, increase) is not known. We hypothesized that exercise would activate neutrophil genes involved in apoptosis, inflammation, and cell growth and repair, since these functions in leukocytes are known to be influenced by exercise. Blood was sampled before and immediately after 30-min of constant, heavy (about 80% peak O2 uptake) cycle-ergometer exercise in 12 healthy men (19-29 yr old) of average fitness. Neutrophils were isolated using density gradients; RNA was hybridized to Affymetrix U133+2 Genechip arrays. Using FDR<0.05 with 95% confidence a total of 526 genes were differentially expressed between before and after exercise. 316 genes had higher expression after exercise. The Jak/STAT pathway, known to inhibit apoptosis, was significantly activated (EASE score, p<0.005), but 14 genes were altered in a way likely to accelerate apoptosis as well. Similarly, both proinflammatory (e.g., IL32, TNFSF8 and CCR5) and anti-inflammatory (e.g., ANXA1) were affected. Growth and repair genes like AREG and FGF2 receptor genes (involved in angiogenesis) were also activated. Finally, a number of neutrophil genes known to be involved in pathological conditions like asthma and arthritis were altered by exercise, suggesting novel links between physical activity and disease or its prevention. In summary, brief heavy exercise leads to a previously unknown substantial and significant alteration in neutrophil gene expression.
Effects of 30 min of aerobic exercise on gene expression in human neutrophils.
No sample metadata fields
View SamplesSpinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene, which encodes a deubiquitinating enzyme, ATXN3, implicated in numerous quality control pathways. Several mechanisms have been proposed to explain the pathogenic role of mutant polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating transcription, we compared gene expression profiles in wildtype (WT) versus Atxn3 knockout (KO) mouse embryonic fibroblasts (MEFs).
Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways.
Specimen part
View Samples