refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon SRP167442
RNA-seq of Mus musculus: WT and MTCH2 KO Naïve & Primed mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2-/- ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2-/- and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs. Overall design: Examination of WT and MTCH2 KO ESC and EpiLC mouse embryonic stem cells transcriptome

Publication Title

MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP098688
Epigenetic mechanisms underlie the crosstalk between growth factors and a steroid hormone [HCT RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Growth factors (GFs) suppression by steroid hormones recurs in embryology and is co-opted in pathology. While studying mammary cell migration, which is stimulated by GFs and antagonized by glucocorticoids (GCs), we found that GCs inhibit positive feedback loops activated by GFs and stimulate the reciprocal negative loops. Although no alterations in DNA methylation accompany the transcriptional events instigated by either stimulus, forced demethylation of distal regions broadened the repertoire of inducible genes. Our data indicate that the crosstalk involve transcription factors like p53 and NF-kB, along with reduced pausing (and traveling) of RNA polymerase II (RNAPII) at the promoters (and bodies) of GF-inducible genes. In addition, while GFs hyper-acetylated chromatin at unmethylated promoters and enhancers of genes involved in motility, GCs hypo-acetylated the corresponding regions. In conclusion, stably unmethylated genomic regions that encode feedback regulatory modules and differentially recruit RNAPII and acetylases/deacetylases underlie suppression of growth factor signaling by glucocorticoids. Overall design: RNA-Seq – EGF treatemnt for 60 min of WT and DNMT1a and DNMT3b double-knockout HCT116 cells

Publication Title

Epigenetic mechanisms underlie the crosstalk between growth factors and a steroid hormone.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE51837
Effects of exercise on gene and miRNA expression level in human monocytes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE41915
Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE11761
Brief bout of exercise alters gene expression in peripheral blood mononuclear cells of early- and late-pubertal males
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared PBMC genomic response to exercise in both early (EB) and late-pubertal boys (LB)

Publication Title

Brief bout of exercise alters gene expression in peripheral blood mononuclear cells of early- and late-pubertal males.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14642
A Brief Bout of Exercise Alters Gene Expression and Distinct Gene Pathways in PBMC of Early- and Late-Pubertal Females
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared PBMC genomic response to exercise in both early (EG) and late-pubertal girls (LG)

Publication Title

A brief bout of exercise alters gene expression and distinct gene pathways in peripheral blood mononuclear cells of early- and late-pubertal females.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41914
Effects of exercise on gene expression level in human NK Cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We tested the hypothesis on the mechanisms responsible for the early control of NK cell function by identifying a discrete set of genes in circulating NK cells that were altered by exercise.

Publication Title

Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51835
Effects of exercise on gene expression level in human monocytes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We tested the hypothesis on the mechanisms responsible for the early control of monocytes function by identifying a discrete set of genes in circulating monocytes that were altered by exercise.

Publication Title

Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE8668
Effects of exercise on gene expression in human neutrophils
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Relatively brief bouts of exercise alter gene expression in peripheral blood mononuclear cells (PBMCs), but whether or not exercise changes gene expression in circulating neutrophils (whose numbers, like PBMCs, increase) is not known. We hypothesized that exercise would activate neutrophil genes involved in apoptosis, inflammation, and cell growth and repair, since these functions in leukocytes are known to be influenced by exercise. Blood was sampled before and immediately after 30-min of constant, heavy (about 80% peak O2 uptake) cycle-ergometer exercise in 12 healthy men (19-29 yr old) of average fitness. Neutrophils were isolated using density gradients; RNA was hybridized to Affymetrix U133+2 Genechip arrays. Using FDR<0.05 with 95% confidence a total of 526 genes were differentially expressed between before and after exercise. 316 genes had higher expression after exercise. The Jak/STAT pathway, known to inhibit apoptosis, was significantly activated (EASE score, p<0.005), but 14 genes were altered in a way likely to accelerate apoptosis as well. Similarly, both proinflammatory (e.g., IL32, TNFSF8 and CCR5) and anti-inflammatory (e.g., ANXA1) were affected. Growth and repair genes like AREG and FGF2 receptor genes (involved in angiogenesis) were also activated. Finally, a number of neutrophil genes known to be involved in pathological conditions like asthma and arthritis were altered by exercise, suggesting novel links between physical activity and disease or its prevention. In summary, brief heavy exercise leads to a previously unknown substantial and significant alteration in neutrophil gene expression.

Publication Title

Effects of 30 min of aerobic exercise on gene expression in human neutrophils.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117028
Gene Expression Profiles of Atxn3-WT and Atxn3-KO mouse embryonic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene, which encodes a deubiquitinating enzyme, ATXN3, implicated in numerous quality control pathways. Several mechanisms have been proposed to explain the pathogenic role of mutant polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating transcription, we compared gene expression profiles in wildtype (WT) versus Atxn3 knockout (KO) mouse embryonic fibroblasts (MEFs).

Publication Title

Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact